DStokes-CGCP: A low-light color polarization image enhancement method combining chroma spectrum and global contour awareness

IF 3.5 2区 工程技术 Q2 OPTICS
Jin Duan , Meiling Gao , Guangyu Zhao , Jianhua Liu , Zhiyu Zhang , Xuedong He
{"title":"DStokes-CGCP: A low-light color polarization image enhancement method combining chroma spectrum and global contour awareness","authors":"Jin Duan ,&nbsp;Meiling Gao ,&nbsp;Guangyu Zhao ,&nbsp;Jianhua Liu ,&nbsp;Zhiyu Zhang ,&nbsp;Xuedong He","doi":"10.1016/j.optlaseng.2024.108712","DOIUrl":null,"url":null,"abstract":"<div><div>In view of the challenges posed by low light environments, we propose a method for enhancing color polarization images, called DStokes-CGCP. This method employs a dual-branch architecture to effectively leverage the distinct characteristics of different components of the Stokes vector, thereby enhancing the utilization of polarization information. Firstly, the chroma spectrum branch (<em>f<sub>(CS)</sub></em>) extracts features in the spatial and frequency domains based on the low-frequency information of <em>S</em><sub>0</sub>, effectively fusing the information between feature maps of different dimensions, thereby compensating for the loss of spatial domain information and improving image clarity. Secondly, the global contour awareness branch (<em>f</em><sub>(</sub><em><sub>GCA</sub></em><sub>)</sub>) captures the details and edge information of the image through edge and global feature extraction for the high-frequency components of <em>S</em><sub>1</sub> and <em>S</em><sub>2</sub>, and further enhances the clarity and texture details of <em>S</em><sub>1</sub> and <em>S</em><sub>2</sub>. Additionally, this study introduces a new dataset, named RCPI. Experimental results show that DStokes-CGCP performs well in improving the quality of low-light images and enhancing the naturalness of the effect.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"185 ","pages":"Article 108712"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006900","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the challenges posed by low light environments, we propose a method for enhancing color polarization images, called DStokes-CGCP. This method employs a dual-branch architecture to effectively leverage the distinct characteristics of different components of the Stokes vector, thereby enhancing the utilization of polarization information. Firstly, the chroma spectrum branch (f(CS)) extracts features in the spatial and frequency domains based on the low-frequency information of S0, effectively fusing the information between feature maps of different dimensions, thereby compensating for the loss of spatial domain information and improving image clarity. Secondly, the global contour awareness branch (f(GCA)) captures the details and edge information of the image through edge and global feature extraction for the high-frequency components of S1 and S2, and further enhances the clarity and texture details of S1 and S2. Additionally, this study introduces a new dataset, named RCPI. Experimental results show that DStokes-CGCP performs well in improving the quality of low-light images and enhancing the naturalness of the effect.
DStokes-CGCP:一种结合色度光谱和全局轮廓感知的弱光彩色偏振图像增强方法
针对弱光环境带来的挑战,我们提出了一种增强彩色偏振图像的方法,称为DStokes-CGCP。该方法采用双支路结构,有效地利用了Stokes矢量不同分量的不同特性,提高了极化信息的利用率。首先,色度谱分支(f(CS))基于S0的低频信息提取空间域和频率域的特征,有效融合不同维数特征图之间的信息,从而补偿空间域信息的损失,提高图像清晰度。其次,全局轮廓感知分支(f(GCA))通过对S1和S2的高频分量进行边缘和全局特征提取,捕获图像的细节和边缘信息,进一步增强S1和S2的清晰度和纹理细节。此外,本研究还引入了一个名为RCPI的新数据集。实验结果表明,DStokes-CGCP在改善弱光图像质量和增强效果的自然度方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信