The reconstruction and defects detection of fiber pack

IF 3.5 2区 工程技术 Q2 OPTICS
Tengyin Shi , Zhuo Zhang , Yaohui Xue , Jingze Lv , Yiqun Zhang
{"title":"The reconstruction and defects detection of fiber pack","authors":"Tengyin Shi ,&nbsp;Zhuo Zhang ,&nbsp;Yaohui Xue ,&nbsp;Jingze Lv ,&nbsp;Yiqun Zhang","doi":"10.1016/j.optlaseng.2024.108719","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber optic guidance technology is a crucial approach for weapon teleoperation. However, the reliable release of ultra-long-distance guidance fiber through tight winding has always posed a technical challenge that hinders its development. The winding and forming process of the guidance fiber pack often leads to various structural defects, significantly compromising its release reliability. Therefore, it is imperative to address geometric reconstruction and defect detection within the internal structure of formed fiber packs. In this study, an innovative approach is proposed utilizing industrial computerized tomography (CT) technology for precise geometric reconstruction and nondestructive defect detection in guidance fiber packs. The method initially acquires visualization data of the fiber pack through industrial CT scanning, followed by precise extraction of the fiber's cross-section centroid using image digitization techniques. Subsequently, an innovative algorithm based on centroid distance is developed for point determination, enabling the identification and connection of correlated centroid points to construct a geometric reconstruction model of the actual internal structure of the fiber pack for the first time. Finally, the geometric features of various typical structural defects are defined, and based on these features, the detection, identification, and location of the defects of the fiber pack structure are realized. Experimental results demonstrate that this method exhibits high accuracy and sensitivity, providing robust support for further advancements in fiber optic guidance technology.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"185 ","pages":"Article 108719"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006973","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber optic guidance technology is a crucial approach for weapon teleoperation. However, the reliable release of ultra-long-distance guidance fiber through tight winding has always posed a technical challenge that hinders its development. The winding and forming process of the guidance fiber pack often leads to various structural defects, significantly compromising its release reliability. Therefore, it is imperative to address geometric reconstruction and defect detection within the internal structure of formed fiber packs. In this study, an innovative approach is proposed utilizing industrial computerized tomography (CT) technology for precise geometric reconstruction and nondestructive defect detection in guidance fiber packs. The method initially acquires visualization data of the fiber pack through industrial CT scanning, followed by precise extraction of the fiber's cross-section centroid using image digitization techniques. Subsequently, an innovative algorithm based on centroid distance is developed for point determination, enabling the identification and connection of correlated centroid points to construct a geometric reconstruction model of the actual internal structure of the fiber pack for the first time. Finally, the geometric features of various typical structural defects are defined, and based on these features, the detection, identification, and location of the defects of the fiber pack structure are realized. Experimental results demonstrate that this method exhibits high accuracy and sensitivity, providing robust support for further advancements in fiber optic guidance technology.
纤维包的重建与缺陷检测
光纤制导技术是武器远程操作的重要手段。然而,超远距离制导光纤通过紧缠绕的可靠释放一直是阻碍其发展的技术难题。导流光纤包在缠绕成形过程中往往会产生各种结构缺陷,严重影响其释放可靠性。因此,解决成型纤维包内部结构的几何重构和缺陷检测问题势在必行。在本研究中,提出了一种利用工业计算机断层扫描(CT)技术进行精确几何重建和无损缺陷检测的创新方法。该方法首先通过工业CT扫描获取纤维包的可视化数据,然后利用图像数字化技术精确提取纤维截面质心。随后,提出了一种基于质心距离的创新点确定算法,实现了相关质心点的识别和连接,首次构建了光纤包实际内部结构的几何重建模型。最后,定义了各种典型结构缺陷的几何特征,并基于这些特征实现了纤维包结构缺陷的检测、识别和定位。实验结果表明,该方法具有较高的精度和灵敏度,为光纤制导技术的进一步发展提供了有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信