Improving laser directed energy deposition with wire feed-stock through beam shaping with a deformable mirror

IF 3.5 2区 工程技术 Q2 OPTICS
Yongcui Mi , Fredrik Sikström , Luigi Angelastri , Pasquale Guglielmi , Gianfranco Palumbo , Antonio Ancona
{"title":"Improving laser directed energy deposition with wire feed-stock through beam shaping with a deformable mirror","authors":"Yongcui Mi ,&nbsp;Fredrik Sikström ,&nbsp;Luigi Angelastri ,&nbsp;Pasquale Guglielmi ,&nbsp;Gianfranco Palumbo ,&nbsp;Antonio Ancona","doi":"10.1016/j.optlaseng.2024.108716","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the uncharted territory of beam shaping through a novel deformable mirror system in directed energy deposition laser wire, an emerging area in Additive Manufacturing. While beam shaping has shown substantial benefits in laser processes like welding and powder bed fusion, its potential in this specific domain remains unexploited. The research investigates the influence of three near-elliptical Gaussian beam shapes on melt pool and bead geometries during deposition with stainless-steel wire. The study reveals three distinct processing modes achievable at the same total power through beam shaping, with significant modifications observed in melt pool and bead structures. Reduced bead geometry variation and enhanced process stability were achieved with the beam shape with major axis along the wire feeding direction, and with highest average power density and intermediate peak power density. The findings underscore the potential of beam shaping to enhance robustness and increase energy utilization and productivity in this process.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"185 ","pages":"Article 108716"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006948","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the uncharted territory of beam shaping through a novel deformable mirror system in directed energy deposition laser wire, an emerging area in Additive Manufacturing. While beam shaping has shown substantial benefits in laser processes like welding and powder bed fusion, its potential in this specific domain remains unexploited. The research investigates the influence of three near-elliptical Gaussian beam shapes on melt pool and bead geometries during deposition with stainless-steel wire. The study reveals three distinct processing modes achievable at the same total power through beam shaping, with significant modifications observed in melt pool and bead structures. Reduced bead geometry variation and enhanced process stability were achieved with the beam shape with major axis along the wire feeding direction, and with highest average power density and intermediate peak power density. The findings underscore the potential of beam shaping to enhance robustness and increase energy utilization and productivity in this process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信