Study of the synergistic effects of bioactive glasses with Manuka honey

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Jessica Lippert, Marcela Arango-Ospina, Aldo R. Boccaccini
{"title":"Study of the synergistic effects of bioactive glasses with Manuka honey","authors":"Jessica Lippert,&nbsp;Marcela Arango-Ospina,&nbsp;Aldo R. Boccaccini","doi":"10.1016/j.oceram.2024.100706","DOIUrl":null,"url":null,"abstract":"<div><div>Bioactive glasses (BGs) are highly researched biomaterials in the field of bone tissue engineering. Besides their good biocompatibility and biodegradability, they also develop osteogenic and angiogenic effects due to the release of several biologically active ions through the dissolution process. To further improve the functionality of BGs, different biomolecules can be added, which are then released into the body together with the BG ionic dissolution products. For this purpose, phytotherapeutic agents can be used, which have the potential advantage of inducing less undesirable side effects than synthetic drugs and can exhibit anti-inflammatory and antibacterial activity. A well-known example of such natural compounds is the Manuka honey from New Zealand, which was used in this project. The aim of this study was thus to investigate the synergistic effects of the dissolution products of bioactive glasses in combination with Manuka honey (MH). Different relevant bioactive glass compositions (45S5 BG, 13–93 BG and 0106-B1 BG) were combined with MH. Cell biology (osteoblast-like cell line MG-63) and antibacterial assays (<em>E. coli</em> and <em>S. aureus</em>) were performed. The results indicated synergistic effects of BGs and MH, particularly in relation to the antibacterial activity of BG-MH combinations, which resulted in overall bacteria viabilities of &lt; 40% compared to 80% of viable bacteria for BG samples without MH. Interestingly, the ionic dissolution products from 13-93 BG and 0106-B1 BG showed superior effects on MG-63 cells when combined with MH compared with 45S5 BG at the same concentrations. These findings suggest that combining BGs with MH enhances the stimulatory effects on cells and bacteria, supporting the potential use of BGs in combination with natural compounds for tissue engineering applications.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"21 ","pages":"Article 100706"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive glasses (BGs) are highly researched biomaterials in the field of bone tissue engineering. Besides their good biocompatibility and biodegradability, they also develop osteogenic and angiogenic effects due to the release of several biologically active ions through the dissolution process. To further improve the functionality of BGs, different biomolecules can be added, which are then released into the body together with the BG ionic dissolution products. For this purpose, phytotherapeutic agents can be used, which have the potential advantage of inducing less undesirable side effects than synthetic drugs and can exhibit anti-inflammatory and antibacterial activity. A well-known example of such natural compounds is the Manuka honey from New Zealand, which was used in this project. The aim of this study was thus to investigate the synergistic effects of the dissolution products of bioactive glasses in combination with Manuka honey (MH). Different relevant bioactive glass compositions (45S5 BG, 13–93 BG and 0106-B1 BG) were combined with MH. Cell biology (osteoblast-like cell line MG-63) and antibacterial assays (E. coli and S. aureus) were performed. The results indicated synergistic effects of BGs and MH, particularly in relation to the antibacterial activity of BG-MH combinations, which resulted in overall bacteria viabilities of < 40% compared to 80% of viable bacteria for BG samples without MH. Interestingly, the ionic dissolution products from 13-93 BG and 0106-B1 BG showed superior effects on MG-63 cells when combined with MH compared with 45S5 BG at the same concentrations. These findings suggest that combining BGs with MH enhances the stimulatory effects on cells and bacteria, supporting the potential use of BGs in combination with natural compounds for tissue engineering applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信