On the potential function σ(H,m,n) of an arbitrary bipartite graph H

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jian-Hua Yin, Kai-Xin Chang, Jia-Qi Huang
{"title":"On the potential function σ(H,m,n) of an arbitrary bipartite graph H","authors":"Jian-Hua Yin,&nbsp;Kai-Xin Chang,&nbsp;Jia-Qi Huang","doi":"10.1016/j.dam.2024.11.027","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are two nonincreasing sequences of nonnegative integers. The pair <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is said to be a <em>bigraphic pair</em> if there is a simple bipartite graph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span> with vertex bipartition <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are the degrees of the vertices in <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>, respectively. In this case, <span><math><mi>G</mi></math></span> is referred to as a <em>realization</em> of <span><math><mi>π</mi></math></span>. For a given bipartite graph <span><math><mrow><mi>H</mi><mo>=</mo><mi>H</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>=</mo><mi>s</mi></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>Y</mi><mo>|</mo></mrow><mo>=</mo><mi>t</mi></mrow></math></span>, we say that <span><math><mi>π</mi></math></span> is a <em>potentially</em> <span><math><mi>H</mi></math></span><em>-bigraphic pair</em> if <span><math><mi>π</mi></math></span> has a realization <span><math><mi>G</mi></math></span> containing <span><math><mi>H</mi></math></span> as a subgraph with the <span><math><mi>s</mi></math></span> vertices of <span><math><mi>X</mi></math></span> in the part of <span><math><mi>G</mi></math></span> of size <span><math><mi>m</mi></math></span> and the <span><math><mi>t</mi></math></span> vertices of <span><math><mi>Y</mi></math></span> in the part of <span><math><mi>G</mi></math></span> of size <span><math><mi>n</mi></math></span>. Let <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum integer <span><math><mi>k</mi></math></span> such that every bigraphic pair <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow><mo>≥</mo><mi>k</mi></mrow></math></span> is a potentially <span><math><mi>H</mi></math></span>-bigraphic pair, where <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. The parameter <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is known as the <em>potential function</em> of <span><math><mi>H</mi></math></span>, and can be viewed as a degree sequence variant of the classical extremal function <span><math><mrow><mi>e</mi><mi>x</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> as introduced by Erdős et al. Ferrara et al. determined <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mn>9</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> and <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mn>2</mn><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In this paper, for an arbitrary bipartite graph <span><math><mi>H</mi></math></span>, we firstly give a construction that yields a lower bound on <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Then, we determine <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msub></math></span> by adding a new vertex that is adjacent to <span><math><mi>d</mi></math></span> vertices of the part of size <span><math><mi>t</mi></math></span>. Finally, we investigate the precise behavior of <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for an arbitrary bipartite graph <span><math><mi>H</mi></math></span>, and determine <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mo>max</mo><mrow><mo>{</mo><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mn>2</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>d</mi><mo>=</mo><mo>min</mo><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>}</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 189-194"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004992","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let π=(f1,,fm;g1,,gn), where f1,,fm and g1,,gn are two nonincreasing sequences of nonnegative integers. The pair π=(f1,,fm;g1,,gn) is said to be a bigraphic pair if there is a simple bipartite graph G[X,Y] with vertex bipartition (X,Y) such that f1,,fm and g1,,gn are the degrees of the vertices in X and Y, respectively. In this case, G is referred to as a realization of π. For a given bipartite graph H=H[X,Y] with |X|=s and |Y|=t, we say that π is a potentially H-bigraphic pair if π has a realization G containing H as a subgraph with the s vertices of X in the part of G of size m and the t vertices of Y in the part of G of size n. Let σ(H,m,n) denote the minimum integer k such that every bigraphic pair π=(f1,,fm;g1,,gn) with σ(π)k is a potentially H-bigraphic pair, where σ(π)=f1++fm. The parameter σ(H,m,n) is known as the potential function of H, and can be viewed as a degree sequence variant of the classical extremal function ex(H,m,n) as introduced by Erdős et al. Ferrara et al. determined σ(Ks,t,m,n) for nm9s4t4, σ(P,m,n) for nm2 and σ(C2t,m,n) for nm2(t+1). In this paper, for an arbitrary bipartite graph H, we firstly give a construction that yields a lower bound on σ(H,m,n). Then, we determine σ(As,td,m,n) for n2s2t2, where As,td is the graph obtained from Ks1,t by adding a new vertex that is adjacent to d vertices of the part of size t. Finally, we investigate the precise behavior of σ(H,m,n) for an arbitrary bipartite graph H, and determine σ(H,m,n) for nmax{m(td)+(s1)(d1),2s2t2}, where d=min{dH(x)|xX}.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信