{"title":"On the potential function σ(H,m,n) of an arbitrary bipartite graph H","authors":"Jian-Hua Yin, Kai-Xin Chang, Jia-Qi Huang","doi":"10.1016/j.dam.2024.11.027","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are two nonincreasing sequences of nonnegative integers. The pair <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is said to be a <em>bigraphic pair</em> if there is a simple bipartite graph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span> with vertex bipartition <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are the degrees of the vertices in <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>, respectively. In this case, <span><math><mi>G</mi></math></span> is referred to as a <em>realization</em> of <span><math><mi>π</mi></math></span>. For a given bipartite graph <span><math><mrow><mi>H</mi><mo>=</mo><mi>H</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>=</mo><mi>s</mi></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>Y</mi><mo>|</mo></mrow><mo>=</mo><mi>t</mi></mrow></math></span>, we say that <span><math><mi>π</mi></math></span> is a <em>potentially</em> <span><math><mi>H</mi></math></span><em>-bigraphic pair</em> if <span><math><mi>π</mi></math></span> has a realization <span><math><mi>G</mi></math></span> containing <span><math><mi>H</mi></math></span> as a subgraph with the <span><math><mi>s</mi></math></span> vertices of <span><math><mi>X</mi></math></span> in the part of <span><math><mi>G</mi></math></span> of size <span><math><mi>m</mi></math></span> and the <span><math><mi>t</mi></math></span> vertices of <span><math><mi>Y</mi></math></span> in the part of <span><math><mi>G</mi></math></span> of size <span><math><mi>n</mi></math></span>. Let <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum integer <span><math><mi>k</mi></math></span> such that every bigraphic pair <span><math><mrow><mi>π</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>;</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow><mo>≥</mo><mi>k</mi></mrow></math></span> is a potentially <span><math><mi>H</mi></math></span>-bigraphic pair, where <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. The parameter <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is known as the <em>potential function</em> of <span><math><mi>H</mi></math></span>, and can be viewed as a degree sequence variant of the classical extremal function <span><math><mrow><mi>e</mi><mi>x</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> as introduced by Erdős et al. Ferrara et al. determined <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mn>9</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> and <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mi>m</mi><mo>≥</mo><mn>2</mn><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In this paper, for an arbitrary bipartite graph <span><math><mi>H</mi></math></span>, we firstly give a construction that yields a lower bound on <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Then, we determine <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msub></math></span> by adding a new vertex that is adjacent to <span><math><mi>d</mi></math></span> vertices of the part of size <span><math><mi>t</mi></math></span>. Finally, we investigate the precise behavior of <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for an arbitrary bipartite graph <span><math><mi>H</mi></math></span>, and determine <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mo>max</mo><mrow><mo>{</mo><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mn>2</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>d</mi><mo>=</mo><mo>min</mo><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>}</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 189-194"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004992","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let , where and are two nonincreasing sequences of nonnegative integers. The pair is said to be a bigraphic pair if there is a simple bipartite graph with vertex bipartition such that and are the degrees of the vertices in and , respectively. In this case, is referred to as a realization of . For a given bipartite graph with and , we say that is a potentially-bigraphic pair if has a realization containing as a subgraph with the vertices of in the part of of size and the vertices of in the part of of size . Let denote the minimum integer such that every bigraphic pair with is a potentially -bigraphic pair, where . The parameter is known as the potential function of , and can be viewed as a degree sequence variant of the classical extremal function as introduced by Erdős et al. Ferrara et al. determined for , for and for . In this paper, for an arbitrary bipartite graph , we firstly give a construction that yields a lower bound on . Then, we determine for , where is the graph obtained from by adding a new vertex that is adjacent to vertices of the part of size . Finally, we investigate the precise behavior of for an arbitrary bipartite graph , and determine for , where .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.