Benjamin Avakian , Béatrice A. Ledésert , Ghislain Trullenque , Ronan L. Hébert , Johanne Klee , Sébastien Potel , Titouan Miloikovitch , Steven Goderis , Philippe Claeys
{"title":"Structural inheritance and hydrothermal alteration impact on fluid circulation in a clay-rich shear zone","authors":"Benjamin Avakian , Béatrice A. Ledésert , Ghislain Trullenque , Ronan L. Hébert , Johanne Klee , Sébastien Potel , Titouan Miloikovitch , Steven Goderis , Philippe Claeys","doi":"10.1016/j.jsg.2024.105296","DOIUrl":null,"url":null,"abstract":"<div><div>Deep geothermal power plants in the Upper Rhine Graben (URG) harness natural hot brines circulating within the fracture network of basement rocks. The nature and geometry of the fault network must be documented in detail to reduce the risk of targeting low-permeability structures during drilling. Fault zones and associated fracture networks exhibit variable hydraulic properties depending on the nature of their deformation, hydrothermal alteration, and mineral infills. The Schauinsland mine, located on the eastern shoulder of the URG, is considered an analogue for exploited geothermal basement reservoirs. It provides a 3D exposure of a clay-rich shear zone and a perpendicular ore vein, analogous to present-day brine circulation pathway encountering a heterogeneously permeable structure. Petrophysical, petrographical, mineralogical and geochemical investigations of this shear zone offer the opportunity to reconstruct its formation and the associated fluid pathways. A statistical analysis of the dataset was carried out to highlight correlations between deformation and hydrothermal alteration processes. Through repeated seismic cycles, the core zone shifted from a conduit to a barrier for fluid circulation, due to the precipitation of secondary minerals within the remaining open spaces, resulting in a multi-core structure. Observations show that the damage zones within the transition zone of the shear zone likely constitute the optimal zone for present-day fluid circulation.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"190 ","pages":"Article 105296"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002487","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep geothermal power plants in the Upper Rhine Graben (URG) harness natural hot brines circulating within the fracture network of basement rocks. The nature and geometry of the fault network must be documented in detail to reduce the risk of targeting low-permeability structures during drilling. Fault zones and associated fracture networks exhibit variable hydraulic properties depending on the nature of their deformation, hydrothermal alteration, and mineral infills. The Schauinsland mine, located on the eastern shoulder of the URG, is considered an analogue for exploited geothermal basement reservoirs. It provides a 3D exposure of a clay-rich shear zone and a perpendicular ore vein, analogous to present-day brine circulation pathway encountering a heterogeneously permeable structure. Petrophysical, petrographical, mineralogical and geochemical investigations of this shear zone offer the opportunity to reconstruct its formation and the associated fluid pathways. A statistical analysis of the dataset was carried out to highlight correlations between deformation and hydrothermal alteration processes. Through repeated seismic cycles, the core zone shifted from a conduit to a barrier for fluid circulation, due to the precipitation of secondary minerals within the remaining open spaces, resulting in a multi-core structure. Observations show that the damage zones within the transition zone of the shear zone likely constitute the optimal zone for present-day fluid circulation.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.