Acoustic emission signature of martensitic transformation in laser powder bed fusion of Ti6Al4V-Fe, supported by operando X-ray diffraction

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Reza Esmaeilzadeh , Vigneashwara Pandiyan , Steven Van Petegem , Mathijs Van der Meer , Milad Hamidi Nasab , Charlotte de Formanoir , Jamasp Jhabvala , Claire Navarre , Lucas Schlenger , Roland Richter , Nicola Casati , Kilian Wasmer , Roland E. Logé
{"title":"Acoustic emission signature of martensitic transformation in laser powder bed fusion of Ti6Al4V-Fe, supported by operando X-ray diffraction","authors":"Reza Esmaeilzadeh ,&nbsp;Vigneashwara Pandiyan ,&nbsp;Steven Van Petegem ,&nbsp;Mathijs Van der Meer ,&nbsp;Milad Hamidi Nasab ,&nbsp;Charlotte de Formanoir ,&nbsp;Jamasp Jhabvala ,&nbsp;Claire Navarre ,&nbsp;Lucas Schlenger ,&nbsp;Roland Richter ,&nbsp;Nicola Casati ,&nbsp;Kilian Wasmer ,&nbsp;Roland E. Logé","doi":"10.1016/j.addma.2024.104562","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on investigating Acoustic Emission (AE) monitoring in the Laser Powder Bed Fusion (LPBF) process, using premixed Ti6Al4V-(x wt%) Fe, where x = 0, 3, and 6. By employing a structure-borne AE sensor, we analyze AE data statistically, uncovering notable discrepancies within the 50–750 kHz frequency range. Leveraging Machine Learning (ML) methodologies, we accurately predict composition for particular processing conditions. These fluctuations in AE signals primarily arise from unique microstructural alterations linked to martensitic phase transformation, corroborated by operando synchrotron X-ray diffraction and post-mortem SEM and EBSD analysis. Moreover, cracks are evident at the periphery of the printed parts, stemming from local inadequate heat input during the blending of Ti6Al4V with added Fe powder. These cracks are discerned via AE signals subsequent to the cessation of the laser beam, correlating with the presence of brittle intermetallics at their junction. This study highlights for the first time the potential of AE monitoring in reliably detecting footprints of martensitic transformations during the LPBF process. Additionally, AE is shown to prove valuable for assessing crack formations, particularly in scenarios involving premixed powders and necessitating precise selection of processing parameters, notably at part edges.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"96 ","pages":"Article 104562"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424006080","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on investigating Acoustic Emission (AE) monitoring in the Laser Powder Bed Fusion (LPBF) process, using premixed Ti6Al4V-(x wt%) Fe, where x = 0, 3, and 6. By employing a structure-borne AE sensor, we analyze AE data statistically, uncovering notable discrepancies within the 50–750 kHz frequency range. Leveraging Machine Learning (ML) methodologies, we accurately predict composition for particular processing conditions. These fluctuations in AE signals primarily arise from unique microstructural alterations linked to martensitic phase transformation, corroborated by operando synchrotron X-ray diffraction and post-mortem SEM and EBSD analysis. Moreover, cracks are evident at the periphery of the printed parts, stemming from local inadequate heat input during the blending of Ti6Al4V with added Fe powder. These cracks are discerned via AE signals subsequent to the cessation of the laser beam, correlating with the presence of brittle intermetallics at their junction. This study highlights for the first time the potential of AE monitoring in reliably detecting footprints of martensitic transformations during the LPBF process. Additionally, AE is shown to prove valuable for assessing crack formations, particularly in scenarios involving premixed powders and necessitating precise selection of processing parameters, notably at part edges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信