Dissolution zone model of the oxide structure in additively manufactured dispersion-strengthened alloys

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Wenyuan Hou , Timothy Stubbs , Lisa DeBeer-Schmitt , Yen-Ting Chang , Marie-Agathe Charpagne , Timothy M. Smith , Aijun Huang , Zachary C. Cordero
{"title":"Dissolution zone model of the oxide structure in additively manufactured dispersion-strengthened alloys","authors":"Wenyuan Hou ,&nbsp;Timothy Stubbs ,&nbsp;Lisa DeBeer-Schmitt ,&nbsp;Yen-Ting Chang ,&nbsp;Marie-Agathe Charpagne ,&nbsp;Timothy M. Smith ,&nbsp;Aijun Huang ,&nbsp;Zachary C. Cordero","doi":"10.1016/j.addma.2024.104554","DOIUrl":null,"url":null,"abstract":"<div><div>The structural evolution of oxides in dispersion-strengthened superalloys during laser-powder bed fusion is considered in detail. Alloy chemistry and process parameter effects on oxide structure are assessed through a parameter study on the model alloy Ni-20Cr, doped with varying concentrations of Y<sub>2</sub>O<sub>3</sub> and Al. Small angle neutron scattering measurements of the dispersoid size distribution show the dispersoid size increases with higher laser power, slower scan speed, and increasing Y<sub>2</sub>O<sub>3</sub> and Al content. Complementary electron microscopy measurements reveal reactions between Y<sub>2</sub>O<sub>3</sub> and Al, even in nanoscale dispersoids, and the presence of micron-scale oxide slag inclusions in select specimens. A scaling analysis of mass and momentum transport within the melt pool, presented here, establishes that diffusional structural evolution mechanisms dominate for nanoscale dispersoids, while fluid forces and advection become significant for larger slag inclusions. These findings are developed into a theory of dispersoid structural evolution, integrating quantitative models of diffusional processes – dispersoid dissolution, nucleation, growth, coarsening – with a reduced order model of time-temperature trajectories of fluid parcels within the melt pool. Calculations of the dispersoid size in single-pass melting reveal a zone in the center of the melt track in which the oxide feedstock fully dissolves. Within this zone the final Y<sub>2</sub>O<sub>3</sub> size is independent of feedstock size and determined by nucleation and growth kinetics. If the dissolution zones of adjacent melt tracks overlap sufficiently with each other to dissolve large oxides, formed during printing or present in the powder feedstock, then the dispersoid structure throughout the build volume is homogeneous and matches that from a single pass within the dissolution zone. Gaps between adjacent dissolution zones result in oxide accumulation into larger slag inclusions. Predictions of final dispersoid size and slag formation using this dissolution zone model match the present experimental data and explain process-structure linkages speculated in the open literature.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"96 ","pages":"Article 104554"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424006006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The structural evolution of oxides in dispersion-strengthened superalloys during laser-powder bed fusion is considered in detail. Alloy chemistry and process parameter effects on oxide structure are assessed through a parameter study on the model alloy Ni-20Cr, doped with varying concentrations of Y2O3 and Al. Small angle neutron scattering measurements of the dispersoid size distribution show the dispersoid size increases with higher laser power, slower scan speed, and increasing Y2O3 and Al content. Complementary electron microscopy measurements reveal reactions between Y2O3 and Al, even in nanoscale dispersoids, and the presence of micron-scale oxide slag inclusions in select specimens. A scaling analysis of mass and momentum transport within the melt pool, presented here, establishes that diffusional structural evolution mechanisms dominate for nanoscale dispersoids, while fluid forces and advection become significant for larger slag inclusions. These findings are developed into a theory of dispersoid structural evolution, integrating quantitative models of diffusional processes – dispersoid dissolution, nucleation, growth, coarsening – with a reduced order model of time-temperature trajectories of fluid parcels within the melt pool. Calculations of the dispersoid size in single-pass melting reveal a zone in the center of the melt track in which the oxide feedstock fully dissolves. Within this zone the final Y2O3 size is independent of feedstock size and determined by nucleation and growth kinetics. If the dissolution zones of adjacent melt tracks overlap sufficiently with each other to dissolve large oxides, formed during printing or present in the powder feedstock, then the dispersoid structure throughout the build volume is homogeneous and matches that from a single pass within the dissolution zone. Gaps between adjacent dissolution zones result in oxide accumulation into larger slag inclusions. Predictions of final dispersoid size and slag formation using this dissolution zone model match the present experimental data and explain process-structure linkages speculated in the open literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信