Boosting ubiquitin-proteasome system-mediated androgen receptor degradation and cGAS-STING pathway activation for synergistic prostate cancer therapy by engineered zinc-manganese oxide nanoparticles
Linnan Yang , Yi Hu , Hui Peng , Zhengbin Wang , Sixu Chen , Jieying Qian , Yujie Yang , Zhonghua Xu , Jin Wu , Chaozhao Liang , Guilong Zhang , Yunjiao Zhang , Li Zhang
{"title":"Boosting ubiquitin-proteasome system-mediated androgen receptor degradation and cGAS-STING pathway activation for synergistic prostate cancer therapy by engineered zinc-manganese oxide nanoparticles","authors":"Linnan Yang , Yi Hu , Hui Peng , Zhengbin Wang , Sixu Chen , Jieying Qian , Yujie Yang , Zhonghua Xu , Jin Wu , Chaozhao Liang , Guilong Zhang , Yunjiao Zhang , Li Zhang","doi":"10.1016/j.nantod.2024.102560","DOIUrl":null,"url":null,"abstract":"<div><div>Androgen receptor (AR) is an essential target for prostate cancer (PCa) therapy, while required resistance due to AR overexpression/abnormal splicing often leads to therapeutic failure, and how to realize the synergistic therapeutic efficacy for PCa remains a challenge. Herein, a novel paradigm of zinc-manganese oxide nanoparticles (ZMONPs) is rationally engineered, which can cooperate in promoting ubiquitin-proteasome system (UPS)-mediated AR degradation and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway activation, thereby generating a tumoricidal immune microenvironment to elicit PCa cell death. Upon lysosomal acidolysis, ZMONPs promote zinc ions overload to produce more reactive oxygen species (ROS), which ultimately contribute to UPS-mediated AR degradation and tumoricidal effect. In PCa mouse models, ZMONPs significantly down-regulate the abundance of AR within the tumor microenvironment, further facilitating cGAS-STING signaling pathway activation to secrete C-C motif chemokine ligand 5 (CCL5) and interferon beta (IFN-β), which enhance dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration, thus realizing tumor growth inhibition in a cooperative manner. In addition, co-administration of ZMONPs and docetaxel presents notably synergistic therapeutic efficacy. Collectively, this study highlights the favorable effects of ZMONPs on AR degradation-related hormonal therapy and anti-tumor immunity, which may serve as a promising therapeutic strategy for PCa.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102560"},"PeriodicalIF":13.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174801322400416X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Androgen receptor (AR) is an essential target for prostate cancer (PCa) therapy, while required resistance due to AR overexpression/abnormal splicing often leads to therapeutic failure, and how to realize the synergistic therapeutic efficacy for PCa remains a challenge. Herein, a novel paradigm of zinc-manganese oxide nanoparticles (ZMONPs) is rationally engineered, which can cooperate in promoting ubiquitin-proteasome system (UPS)-mediated AR degradation and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway activation, thereby generating a tumoricidal immune microenvironment to elicit PCa cell death. Upon lysosomal acidolysis, ZMONPs promote zinc ions overload to produce more reactive oxygen species (ROS), which ultimately contribute to UPS-mediated AR degradation and tumoricidal effect. In PCa mouse models, ZMONPs significantly down-regulate the abundance of AR within the tumor microenvironment, further facilitating cGAS-STING signaling pathway activation to secrete C-C motif chemokine ligand 5 (CCL5) and interferon beta (IFN-β), which enhance dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration, thus realizing tumor growth inhibition in a cooperative manner. In addition, co-administration of ZMONPs and docetaxel presents notably synergistic therapeutic efficacy. Collectively, this study highlights the favorable effects of ZMONPs on AR degradation-related hormonal therapy and anti-tumor immunity, which may serve as a promising therapeutic strategy for PCa.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.