{"title":"Efficient oil-water separation using superhydrophobic OPA-MOF-5@PDMS@PU sponge for environmental remediation","authors":"Linlin Yu, Ruoyu Chen, Qian Jia","doi":"10.1016/j.reactfunctpolym.2024.106111","DOIUrl":null,"url":null,"abstract":"<div><div>Oily wastewater, especially oil-water emulsions, has caused severe environmental damage. It is urgent to develop a simple, efficient superhydrophobic and superoleophilic material to address this issue. In this work, a multifunctional sponge based on MOF was proposed. The hydroxy-assisted method was employed to prepare MOF-5 with metal coordination centers. Subsequently, octadecylphosphonic acid (OPA) was used to hydrophobically modify MOF-5 to prepare stable and hydrophobic OPA-MOF-5. Polydimethylsiloxane (PDMS) with low surface energy was employed as the adhesive, and the hydrophobic OPA-MOF-5 was loaded onto the polyurethane (PU) sponge to obtain the stable superhydrophobic OPA-MOF-5@PDMS@PU with a WCA of 155.9°. The produced modified sponge exhibited high sorption capacity and oil-water separation efficiency, with a sorption capacity of 26.7 (petroleum ether)-85.6 (chloroform) g/g and a separation efficiency of over 99 %. It has also shown satisfactory emulsion purification and flame retardancy capacities.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"206 ","pages":"Article 106111"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002864","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Oily wastewater, especially oil-water emulsions, has caused severe environmental damage. It is urgent to develop a simple, efficient superhydrophobic and superoleophilic material to address this issue. In this work, a multifunctional sponge based on MOF was proposed. The hydroxy-assisted method was employed to prepare MOF-5 with metal coordination centers. Subsequently, octadecylphosphonic acid (OPA) was used to hydrophobically modify MOF-5 to prepare stable and hydrophobic OPA-MOF-5. Polydimethylsiloxane (PDMS) with low surface energy was employed as the adhesive, and the hydrophobic OPA-MOF-5 was loaded onto the polyurethane (PU) sponge to obtain the stable superhydrophobic OPA-MOF-5@PDMS@PU with a WCA of 155.9°. The produced modified sponge exhibited high sorption capacity and oil-water separation efficiency, with a sorption capacity of 26.7 (petroleum ether)-85.6 (chloroform) g/g and a separation efficiency of over 99 %. It has also shown satisfactory emulsion purification and flame retardancy capacities.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.