{"title":"Numerical study on hydrothermal performance in a microchannel with gradient array of ribs and pin fins","authors":"Chunquan Li , Yuanhao Zheng , Hongyan Huang, Wencong Zhang, Yilong Hu, Yuling Shang","doi":"10.1016/j.ijthermalsci.2024.109562","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative microchannel heat sink (MCHS-GDRPF) with gradient array of ribs and pin fins is proposed to address the heat thermal management of high heat flux densities and ensure temperature uniformity. This heat sink combines the cooling advantages of ribs and pin fins, with the structural dimensions of the ribs and pin fins increasing linearly along the flow direction. Three-dimensional numerical simulations are utilized to assess the impacts of different gradient array patterns, relative rib-pin fins diameter and height on hydrothermal performance and temperature uniformity. Additionally, a comprehensive comparison of hydrothermal performance between the MCHS-GDRPF and four other microchannels with similar structured arrangements is presented. The results show that at a Reynolds number of 622, the surface temperature of the heat source is reduced by <span><math><mrow><mn>28</mn><mo>.</mo><mn>59</mn><mspace></mspace><mtext>K</mtext></mrow></math></span>, temperature uniformity is improved by 73.4%, the Nusselt number exhibits a 195.1% enhancement, and the performance evaluation criterion (PEC) attains a value of 1.366. Overall, this structure effectively ensures temperature uniformity and enhances heat dissipation capacity.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"210 ","pages":"Article 109562"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative microchannel heat sink (MCHS-GDRPF) with gradient array of ribs and pin fins is proposed to address the heat thermal management of high heat flux densities and ensure temperature uniformity. This heat sink combines the cooling advantages of ribs and pin fins, with the structural dimensions of the ribs and pin fins increasing linearly along the flow direction. Three-dimensional numerical simulations are utilized to assess the impacts of different gradient array patterns, relative rib-pin fins diameter and height on hydrothermal performance and temperature uniformity. Additionally, a comprehensive comparison of hydrothermal performance between the MCHS-GDRPF and four other microchannels with similar structured arrangements is presented. The results show that at a Reynolds number of 622, the surface temperature of the heat source is reduced by , temperature uniformity is improved by 73.4%, the Nusselt number exhibits a 195.1% enhancement, and the performance evaluation criterion (PEC) attains a value of 1.366. Overall, this structure effectively ensures temperature uniformity and enhances heat dissipation capacity.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.