Effect of warm rolling on microstructure evolution and mechanical properties of a Ni–W–Co–Ta medium-heavy alloy

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Jin-Jin Tang , Yi Xiong , Xiao-Qin Zha , Xiu-Ju Du , Yong Li , Feng-Zhang Ren , Shubo Wang
{"title":"Effect of warm rolling on microstructure evolution and mechanical properties of a Ni–W–Co–Ta medium-heavy alloy","authors":"Jin-Jin Tang ,&nbsp;Yi Xiong ,&nbsp;Xiao-Qin Zha ,&nbsp;Xiu-Ju Du ,&nbsp;Yong Li ,&nbsp;Feng-Zhang Ren ,&nbsp;Shubo Wang","doi":"10.1016/j.matchar.2024.114591","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructure and mechanical properties influenced by warm rolling in a Ni–W–Co–Ta medium-heavy alloy (MHA) is studied in this work in order to explore the optimal processing-microstructure-property paradigm. The results show that the initially equiaxed grains evolves into a fibrous structure, aligned with the rolling direction, as the rolling progresses. Texture analysis reveals a transition from Brass-type component to a mixed texture component of Brass-type and Copper-type with increasing deformation. Concurrently, dislocation density rise, and nano deformation twins and precipitation of Ni<sub>4</sub>W take place. The strength is significantly enhanced. However, the trade-off between strength and ductility still persists. An optimal combination of strength and ductility has been achieved at a 50 % rolling deformation. These demonstrate that warm rolling is an effective processing route for manufacturing high-strength and still ductile MHA.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114591"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure and mechanical properties influenced by warm rolling in a Ni–W–Co–Ta medium-heavy alloy (MHA) is studied in this work in order to explore the optimal processing-microstructure-property paradigm. The results show that the initially equiaxed grains evolves into a fibrous structure, aligned with the rolling direction, as the rolling progresses. Texture analysis reveals a transition from Brass-type component to a mixed texture component of Brass-type and Copper-type with increasing deformation. Concurrently, dislocation density rise, and nano deformation twins and precipitation of Ni4W take place. The strength is significantly enhanced. However, the trade-off between strength and ductility still persists. An optimal combination of strength and ductility has been achieved at a 50 % rolling deformation. These demonstrate that warm rolling is an effective processing route for manufacturing high-strength and still ductile MHA.
温轧对Ni-W-Co-Ta中重合金组织演变及力学性能的影响
本文研究了热轧对Ni-W-Co-Ta中重合金(MHA)组织和力学性能的影响,以探索最佳的加工-组织-性能模式。结果表明:随着轧制过程的进行,最初的等轴晶粒逐渐演变成与轧制方向一致的纤维组织;织构分析表明,随着变形的增加,构件由黄铜型向黄铜型和铜型混合织构过渡。同时,位错密度升高,发生纳米变形孪晶和Ni4W的析出。强度明显增强。然而,强度和延性之间的权衡仍然存在。在50%的轧制变形下,实现了强度和延展性的最佳组合。结果表明,热轧是制造高强度、高延展性MHA的有效工艺路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信