Ex-situ observation of ferrite grain growth behavior in a welded 9Cr-1Mo-V-Nb steel during aging at 740 °C

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Katsuhiro Sato , Masatoshi Mitsuhara , Akihiro Shin , Yoshiki Shioda , Kyohei Nomura , Keiji Kubushiro , Noriko Saito , Hideharu Nakashima
{"title":"Ex-situ observation of ferrite grain growth behavior in a welded 9Cr-1Mo-V-Nb steel during aging at 740 °C","authors":"Katsuhiro Sato ,&nbsp;Masatoshi Mitsuhara ,&nbsp;Akihiro Shin ,&nbsp;Yoshiki Shioda ,&nbsp;Kyohei Nomura ,&nbsp;Keiji Kubushiro ,&nbsp;Noriko Saito ,&nbsp;Hideharu Nakashima","doi":"10.1016/j.matchar.2024.114584","DOIUrl":null,"url":null,"abstract":"<div><div>It has recently been reported that ferrite grains coarsened to several hundred micrometers were occasionally observed in long-term serviced 9Cr-1Mo-V-Nb steel welds. To clarify the factors that cause ferrite grain growth in martensite during high-temperature exposure, alternating aging heat treatment and observation of the same field of view was performed using a welded 9Cr-1Mo-V-Nb steel. Such ex-situ observations revealed that the rapid grain growth of ferrite by consuming martensite occurred in the weld metal during aging at 740 °C. In the test material used in this study, some δ-ferrite grains were observed in the weld metal near the fusion line. In the region where δ-ferrite grains were observed, the concentrations of austenite-forming elements such as Mn and Ni were locally decreased in the matrix due to dilution by the base metal, promoting δ-ferrite retention after welding. Ex-situ observation indicated that no significant grain growth of δ-ferrite occurred during aging. Therefore, it was suggested that a new ferrite grain formation followed by rapid grain growth consuming martensite occurred during aging. The elastic strain energy density of the dislocations <em>P</em><sup>M</sup><sub>dis</sub> and the interfacial energy density <em>P</em><sup>M</sup><sub>surf</sub> in martensite can affect the driving force for ferrite grain growth by consuming martensite. Based on the evaluation results for <em>P</em><sup>M</sup><sub>dis</sub> and <em>P</em><sup>M</sup><sub>surf</sub> after 500 h of aging, <em>P</em><sup>M</sup><sub>surf</sub> was considered to be the main driving force for ferrite grain growth. Although the ferrite-formation process could not be directly observed, it is possible that ferrite was formed by the recrystallization of martensite through the bulging mechanism.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114584"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009653","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

It has recently been reported that ferrite grains coarsened to several hundred micrometers were occasionally observed in long-term serviced 9Cr-1Mo-V-Nb steel welds. To clarify the factors that cause ferrite grain growth in martensite during high-temperature exposure, alternating aging heat treatment and observation of the same field of view was performed using a welded 9Cr-1Mo-V-Nb steel. Such ex-situ observations revealed that the rapid grain growth of ferrite by consuming martensite occurred in the weld metal during aging at 740 °C. In the test material used in this study, some δ-ferrite grains were observed in the weld metal near the fusion line. In the region where δ-ferrite grains were observed, the concentrations of austenite-forming elements such as Mn and Ni were locally decreased in the matrix due to dilution by the base metal, promoting δ-ferrite retention after welding. Ex-situ observation indicated that no significant grain growth of δ-ferrite occurred during aging. Therefore, it was suggested that a new ferrite grain formation followed by rapid grain growth consuming martensite occurred during aging. The elastic strain energy density of the dislocations PMdis and the interfacial energy density PMsurf in martensite can affect the driving force for ferrite grain growth by consuming martensite. Based on the evaluation results for PMdis and PMsurf after 500 h of aging, PMsurf was considered to be the main driving force for ferrite grain growth. Although the ferrite-formation process could not be directly observed, it is possible that ferrite was formed by the recrystallization of martensite through the bulging mechanism.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信