Simultaneous enhancement of the strength and plasticity of Fe12Mn steel through modulating grain morphology

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Tao Li , Zhiqiang Wu , Wei Liu , Hui Liu , Nan Tang , Haijun Pan , Zhihui Cai , Jun Hu
{"title":"Simultaneous enhancement of the strength and plasticity of Fe12Mn steel through modulating grain morphology","authors":"Tao Li ,&nbsp;Zhiqiang Wu ,&nbsp;Wei Liu ,&nbsp;Hui Liu ,&nbsp;Nan Tang ,&nbsp;Haijun Pan ,&nbsp;Zhihui Cai ,&nbsp;Jun Hu","doi":"10.1016/j.matchar.2024.114566","DOIUrl":null,"url":null,"abstract":"<div><div>The relationship between grain morphology and tensile properties of Fe-<img>12Mn steel thermo-mechanically processed by rolling annealing and re-cold rolling processes was investigated. The results indicated that the re-cold rolling deformed the mostly austenite grain morphology from equiaxed to lamellar, and the steel exhibited a yield strength of 1295 MPa, tensile strength of 1518 MPa, and elongation of 18 %. Compared to the experimental steel without re-cold rolling processes, more than 300 MPa tensile strength was improved and elongation increased from 14 % to 18 %. The steel demonstrated remarkable enhancement in mechanical properties owing to the “multistage TRIP effect”, which referred to the sequential martensitic phase transformation of austenite with varying stability as the strain increased. The change in grain morphology reduced the rate of twin formation and increased the nucleation point of the martensitic phase transition, this also stabilized the retained austenite by increasing the hard phases surrounding the retained austenite, which had multistage stability. These factors contributed to the “multistage TRIP effect”, which could be sustained to higher strains and presented regular fluctuations in work-hardening rates</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114566"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between grain morphology and tensile properties of Fe-12Mn steel thermo-mechanically processed by rolling annealing and re-cold rolling processes was investigated. The results indicated that the re-cold rolling deformed the mostly austenite grain morphology from equiaxed to lamellar, and the steel exhibited a yield strength of 1295 MPa, tensile strength of 1518 MPa, and elongation of 18 %. Compared to the experimental steel without re-cold rolling processes, more than 300 MPa tensile strength was improved and elongation increased from 14 % to 18 %. The steel demonstrated remarkable enhancement in mechanical properties owing to the “multistage TRIP effect”, which referred to the sequential martensitic phase transformation of austenite with varying stability as the strain increased. The change in grain morphology reduced the rate of twin formation and increased the nucleation point of the martensitic phase transition, this also stabilized the retained austenite by increasing the hard phases surrounding the retained austenite, which had multistage stability. These factors contributed to the “multistage TRIP effect”, which could be sustained to higher strains and presented regular fluctuations in work-hardening rates
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信