Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Zhiqiang Liu, Yifan Sun, Shubo Zhang, Yawen Wang, Luncheng Tang, Tian Li, Qiangang Fu, Yujun Jia
{"title":"Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes","authors":"Zhiqiang Liu,&nbsp;Yifan Sun,&nbsp;Shubo Zhang,&nbsp;Yawen Wang,&nbsp;Luncheng Tang,&nbsp;Tian Li,&nbsp;Qiangang Fu,&nbsp;Yujun Jia","doi":"10.1016/j.matchar.2024.114577","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the ablation and scouring resistance of C/C composites, powder with particle sizes of 0.5–1 μm, 1–3 μm and 10–20 μm were used as infiltration powder to prepare C/C-HfC-SiC composites, named HSV-0.5-1, HSV-1-3 and HSV-10-20, respectively. Results show that the agglomeration of the powder makes it difficult to form a uniform and dense ceramic layer on the sample surface. The content of HfC ceramics increases with the particle size of the initial powder. In addition, the grain size of HfC first increases and then becomes irregularly spherical as the initial powder particle size increases. After ablation for 40s, HSV-1-3 shows the best resistance to ablation due to the mixed crystal form of flakes and spheres that form a denser oxide film in the center of the ablation. In three subsequent room-temperature airflow scour tests, the oxide film of HSV-1-3 and HSV-10-20 were damaged in the sample surface. After following ablation for 40 s, HSV-10-20 showed good ablation resistance with the linear ablation of −0.75 μm/s. The reason is the high HfC content and dense ceramic layer contribute to the formation of a continuous and complete oxide layer that prevents oxygen diffusion during ablation. This work provides guidance on the use of particle size in the RMI.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114577"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the ablation and scouring resistance of C/C composites, powder with particle sizes of 0.5–1 μm, 1–3 μm and 10–20 μm were used as infiltration powder to prepare C/C-HfC-SiC composites, named HSV-0.5-1, HSV-1-3 and HSV-10-20, respectively. Results show that the agglomeration of the powder makes it difficult to form a uniform and dense ceramic layer on the sample surface. The content of HfC ceramics increases with the particle size of the initial powder. In addition, the grain size of HfC first increases and then becomes irregularly spherical as the initial powder particle size increases. After ablation for 40s, HSV-1-3 shows the best resistance to ablation due to the mixed crystal form of flakes and spheres that form a denser oxide film in the center of the ablation. In three subsequent room-temperature airflow scour tests, the oxide film of HSV-1-3 and HSV-10-20 were damaged in the sample surface. After following ablation for 40 s, HSV-10-20 showed good ablation resistance with the linear ablation of −0.75 μm/s. The reason is the high HfC content and dense ceramic layer contribute to the formation of a continuous and complete oxide layer that prevents oxygen diffusion during ablation. This work provides guidance on the use of particle size in the RMI.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信