Dongchen Shen , Zhilu Liu , Wei Li , Song Li , Zhengkai Tu
{"title":"Microscopic insights into UiO-66@proton exchange composite membrane by molecular dynamics simulation","authors":"Dongchen Shen , Zhilu Liu , Wei Li , Song Li , Zhengkai Tu","doi":"10.1016/j.ijhydene.2024.11.404","DOIUrl":null,"url":null,"abstract":"<div><div>UiO-66 as one of the known metal-organic frameworks (MOFs) has been recognized as highly promising dopants for enhancing the proton conductivity of proton exchange membrane (PEM) owing to the large pore volume and structure tunability. Despite the numerous experimental reports on MOF-doped PEMs, their increased proton conductivity is commonly ascribed to enhanced water uptake. The underlying mechanisms from a microscopic perspective remain elusive. Therefore, this work explores the microstructure and water diffusion dynamics within composite membranes to decipher their mechanisms involved in proton conductivity using molecular dynamics (MD) simulations. Four types of composite membranes based on two representative MOFs i.e. UiO-66 and UiO-66-NH<sub>2</sub> and two PEMs including Nafion and Dow, respectively, were taken into account. It is revealed that the UiO-66-NH<sub>2</sub> doped Nafion composite membrane exhibits the highest water uptake among the four composite membranes resulting from the super hydrophilicity of UiO-66-NH<sub>2</sub>. Besides, the more concentrated distribution of sulfonic groups near the water-PEM interface and the higher interface roughness of UiO-66-NH<sub>2</sub> doped Nafion lead to more water molecules surrounding its sulfonic groups that are favorable for the proton dissociation from sulfonic groups. Furthermore, the increased water channel connectivity of MOF-doped membranes that promotes proton transport through water via the Grotthuss mechanism demonstrates one of the mechanisms for increased proton conductivity. On the other hand, although the reduced lifetime of the hydrogen bond network and the enhanced water diffusion coefficient within MOF-doped membranes manifest the favorable proton transfer via the Vehicle mechanism. Overall, UiO-66-NH<sub>2</sub> doped Nafion membranes exhibiting the highest water channel connectivity and water diffusion coefficients demonstrate the greatest potential of UiO-66-NH<sub>2</sub> doping in advancing the proton conductivity. These findings provided microscopic insights into understanding the improved proton conductivity mechanism of MOF doped PEMs, and the approaches developed in this work may be extended to other composite membranes.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 236-246"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
UiO-66 as one of the known metal-organic frameworks (MOFs) has been recognized as highly promising dopants for enhancing the proton conductivity of proton exchange membrane (PEM) owing to the large pore volume and structure tunability. Despite the numerous experimental reports on MOF-doped PEMs, their increased proton conductivity is commonly ascribed to enhanced water uptake. The underlying mechanisms from a microscopic perspective remain elusive. Therefore, this work explores the microstructure and water diffusion dynamics within composite membranes to decipher their mechanisms involved in proton conductivity using molecular dynamics (MD) simulations. Four types of composite membranes based on two representative MOFs i.e. UiO-66 and UiO-66-NH2 and two PEMs including Nafion and Dow, respectively, were taken into account. It is revealed that the UiO-66-NH2 doped Nafion composite membrane exhibits the highest water uptake among the four composite membranes resulting from the super hydrophilicity of UiO-66-NH2. Besides, the more concentrated distribution of sulfonic groups near the water-PEM interface and the higher interface roughness of UiO-66-NH2 doped Nafion lead to more water molecules surrounding its sulfonic groups that are favorable for the proton dissociation from sulfonic groups. Furthermore, the increased water channel connectivity of MOF-doped membranes that promotes proton transport through water via the Grotthuss mechanism demonstrates one of the mechanisms for increased proton conductivity. On the other hand, although the reduced lifetime of the hydrogen bond network and the enhanced water diffusion coefficient within MOF-doped membranes manifest the favorable proton transfer via the Vehicle mechanism. Overall, UiO-66-NH2 doped Nafion membranes exhibiting the highest water channel connectivity and water diffusion coefficients demonstrate the greatest potential of UiO-66-NH2 doping in advancing the proton conductivity. These findings provided microscopic insights into understanding the improved proton conductivity mechanism of MOF doped PEMs, and the approaches developed in this work may be extended to other composite membranes.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.