Performance investigations of the easily manufactured composite all-day radiative cooling materials based on PDMS

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ying Xie , Yong Chen , Xueying Xia
{"title":"Performance investigations of the easily manufactured composite all-day radiative cooling materials based on PDMS","authors":"Ying Xie ,&nbsp;Yong Chen ,&nbsp;Xueying Xia","doi":"10.1016/j.matlet.2024.137743","DOIUrl":null,"url":null,"abstract":"<div><div>The passive radiative cooling technology can be employed to obtain the cooling capacity without any energy consumption, which has been garnering significant attention nowadays. This work proposes and experimentally studies the all-day radiative cooling material based on layered composite material made from Polydimethylsiloxane (PDMS). This work adds SiO<sub>2</sub> nano-particles, which act as visible light scatters, and the proposed film can realize an excellent all-day cooling capacity when the thicknesses of the PDMS and Al films are respectively chosen as 200 μm and 4 μm, and the concentration of the SiO<sub>2</sub> particles in the film is 40 %. The theoretical explorations indicated that the presented composite film can exhibit the high reflectivity (90.36 %) and emissivity (90.19 %) in the visible spectrum and atmospheric transparency window (ATW) spectrum. Under direct sunlight of a highest solar irradiance of 688.89 W/m<sup>2</sup>, there is an average temperature difference between cooling film and white paper of 6.3 °C. Furthermore, in clear weather conditions at night with an average humidity level of 58.15 %, it can generate a temperature difference of 4.8 °C. This work proposes an easily manufactured and eco-friendly all-day radiative cooling material, which has the potential applications in future refrigeration technology.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"381 ","pages":"Article 137743"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018834","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The passive radiative cooling technology can be employed to obtain the cooling capacity without any energy consumption, which has been garnering significant attention nowadays. This work proposes and experimentally studies the all-day radiative cooling material based on layered composite material made from Polydimethylsiloxane (PDMS). This work adds SiO2 nano-particles, which act as visible light scatters, and the proposed film can realize an excellent all-day cooling capacity when the thicknesses of the PDMS and Al films are respectively chosen as 200 μm and 4 μm, and the concentration of the SiO2 particles in the film is 40 %. The theoretical explorations indicated that the presented composite film can exhibit the high reflectivity (90.36 %) and emissivity (90.19 %) in the visible spectrum and atmospheric transparency window (ATW) spectrum. Under direct sunlight of a highest solar irradiance of 688.89 W/m2, there is an average temperature difference between cooling film and white paper of 6.3 °C. Furthermore, in clear weather conditions at night with an average humidity level of 58.15 %, it can generate a temperature difference of 4.8 °C. This work proposes an easily manufactured and eco-friendly all-day radiative cooling material, which has the potential applications in future refrigeration technology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信