Numerical simulation on characteristics of hydrodynamics, interphase and wall to bed heat transfer in a pseudo 2D spouted bed using supercritical CO2 as fluidizing agent

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Kun Jiang, Hui Jin
{"title":"Numerical simulation on characteristics of hydrodynamics, interphase and wall to bed heat transfer in a pseudo 2D spouted bed using supercritical CO2 as fluidizing agent","authors":"Kun Jiang,&nbsp;Hui Jin","doi":"10.1016/j.partic.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>By employing the Eulerian-Eulerian Two Fluid Model, the effect of different particle size, supercritical CO<sub>2</sub> (scCO<sub>2</sub>) velocity at slit jet (<em>U</em><sub>jet</sub>) and initial bed height on the macroscopic characteristics (i.e., fountain morphology, profiles of particle velocity, momentum transfer characteristics among particles, transient temperature evolutions of particles, interphase heat transfer coefficient and wall to bed heat transfer characteristics) in the pseudo 2D rectangular spouted bed using scCO<sub>2</sub> as fluidizing agent is numerically studied in detail herein. Considering there are currently no relevant visualized experiments reported using scCO<sub>2</sub> as a fluidized agent due to the extreme operating pressure of CO<sub>2</sub> (25 MPa in this paper) under supercritical conditions, present numerical model was validated with experimental data by using air as the fluidizing agent, confirming simulated instantaneous volume fraction distribution of air and transient temperature evolutions of particles basically consistent with the experiments. Numerical results reveal some of the internal relations among hydrodynamics characteristics in bed, momentum transfer characteristics among particles and relevant heat transfer behaviours. Results show larger <em>U</em><sub>jet</sub> and smaller particle size will accelerate the particles' translational motion in spout, spout core and fountain core zone. Larger particle concentration will promote inter-particle collisions while suppress the kinetic motion of particles in above zones. Decrease the particle size will enhance interphase convective heat transfer coefficient, while increasing <em>U</em><sub>jet</sub> results insignificant impacts. Finally, we also observe the transition zone between annular and periphery zone has a certain enhancing effect on the wall to bed heat transfer coefficient.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 106-125"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

By employing the Eulerian-Eulerian Two Fluid Model, the effect of different particle size, supercritical CO2 (scCO2) velocity at slit jet (Ujet) and initial bed height on the macroscopic characteristics (i.e., fountain morphology, profiles of particle velocity, momentum transfer characteristics among particles, transient temperature evolutions of particles, interphase heat transfer coefficient and wall to bed heat transfer characteristics) in the pseudo 2D rectangular spouted bed using scCO2 as fluidizing agent is numerically studied in detail herein. Considering there are currently no relevant visualized experiments reported using scCO2 as a fluidized agent due to the extreme operating pressure of CO2 (25 MPa in this paper) under supercritical conditions, present numerical model was validated with experimental data by using air as the fluidizing agent, confirming simulated instantaneous volume fraction distribution of air and transient temperature evolutions of particles basically consistent with the experiments. Numerical results reveal some of the internal relations among hydrodynamics characteristics in bed, momentum transfer characteristics among particles and relevant heat transfer behaviours. Results show larger Ujet and smaller particle size will accelerate the particles' translational motion in spout, spout core and fountain core zone. Larger particle concentration will promote inter-particle collisions while suppress the kinetic motion of particles in above zones. Decrease the particle size will enhance interphase convective heat transfer coefficient, while increasing Ujet results insignificant impacts. Finally, we also observe the transition zone between annular and periphery zone has a certain enhancing effect on the wall to bed heat transfer coefficient.

Abstract Image

以超临界CO2为流化剂的伪二维喷流床流体力学、界面传热及壁面传热特性的数值模拟
采用Eulerian-Eulerian双流体模型,研究了不同粒径、裂隙射流超临界CO2 (scCO2)速度(Ujet)和初始床层高度对喷泉形态、颗粒速度分布、颗粒间动量传递特性、颗粒瞬态温度演化等宏观特征的影响。本文对以scCO2为流化剂的伪二维矩形喷淋床的相间换热系数和壁床换热特性进行了数值研究。考虑到超临界条件下CO2的极端工作压力(本文为25 MPa),目前还没有以scCO2为流化剂的相关可视化实验报道,本文以空气为流化剂,用实验数据验证了本文的数值模型,模拟的空气瞬时体积分数分布和颗粒瞬态温度演变与实验基本一致。数值结果揭示了床层流体力学特性、颗粒间动量传递特性和相关传热行为之间的内在联系。结果表明,较大的Ujet和较小的粒径会加速颗粒在喷口、喷口核心和喷口核心区域的平移运动。较大的颗粒浓度会促进颗粒间的碰撞,同时抑制上述区域颗粒的动力学运动。减小颗粒尺寸会提高相间对流换热系数,而增大Ujet对相间对流换热系数影响不显著。最后,我们还观察到环形和外围区之间的过渡区对壁面到床层的换热系数有一定的增强作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信