Dynamic programming-based energy storage siting and sizing: Application to enhance flexibility of large-scale power grid

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Yucan Zhao , Yue Bi , Yao Xu , Yuan Gao , Sile Hu , Yu Guo , Jiaqiang Yang
{"title":"Dynamic programming-based energy storage siting and sizing: Application to enhance flexibility of large-scale power grid","authors":"Yucan Zhao ,&nbsp;Yue Bi ,&nbsp;Yao Xu ,&nbsp;Yuan Gao ,&nbsp;Sile Hu ,&nbsp;Yu Guo ,&nbsp;Jiaqiang Yang","doi":"10.1016/j.est.2024.114734","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issues of limited Energy Storage System (ESS) locations and the flexibility unevenly distributed in the large-scale power grid planning, this paper introduces the Dynamic Programming (DP) theory into flexibility planning, and proposes a DP-based ESS siting and sizing method. This method reduces the computational complexity of siting and sizing to ensure a sufficient number of ESSs allocated. It provides each partitioning area with a certain degree of flexible ramping capability so that the flexibility is evenly distributed in the large-scale grid.</div><div>The proposed method starts with a high-voltage pruning partition algorithm to hierarchically partition the large-scale grid, with the partitioning outcomes serving to divide the various DP stages. Then a state transition equation is established with the ESS rated power as the state variable, considering all nodes which satisfy the voltage level requirements as potential ESS sites to ensure a sufficient number of locations. Following this, a DP basic equation is formulated with the ESS capacity as the decision variable, setting flexibility constraints for all partitioning areas to achieve an even distribution of grid flexibility. By combining the state transition equation and the DP basic equation, the proposed method culminates in the energy storage allocation dynamic programming model, which determines the optimal locations, capacities, and rated powers of ESSs, along with the construction cost.</div><div>This paper further explores the development of the Flexible Resource Allocation Intelligent Decision Software (FRAIDS) building upon the proposed method. Case analysis in an actual grid verifies that the calculations from FRAIDS significantly enhance the entire grid flexibility. Additionally, day-ahead dispatching results indicate that, following ESS allocation, net load fluctuates between 15,295.5 MW and 17,794.9 MW with the conventional method, compared to a more stable range of 16,309.8 MW to 17,417.4 MW with the proposed method. This shows that the proposed method effectively reduces net load fluctuations, thereby significantly alleviating flexible ramping pressure on thermal units.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114734"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043202","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issues of limited Energy Storage System (ESS) locations and the flexibility unevenly distributed in the large-scale power grid planning, this paper introduces the Dynamic Programming (DP) theory into flexibility planning, and proposes a DP-based ESS siting and sizing method. This method reduces the computational complexity of siting and sizing to ensure a sufficient number of ESSs allocated. It provides each partitioning area with a certain degree of flexible ramping capability so that the flexibility is evenly distributed in the large-scale grid.
The proposed method starts with a high-voltage pruning partition algorithm to hierarchically partition the large-scale grid, with the partitioning outcomes serving to divide the various DP stages. Then a state transition equation is established with the ESS rated power as the state variable, considering all nodes which satisfy the voltage level requirements as potential ESS sites to ensure a sufficient number of locations. Following this, a DP basic equation is formulated with the ESS capacity as the decision variable, setting flexibility constraints for all partitioning areas to achieve an even distribution of grid flexibility. By combining the state transition equation and the DP basic equation, the proposed method culminates in the energy storage allocation dynamic programming model, which determines the optimal locations, capacities, and rated powers of ESSs, along with the construction cost.
This paper further explores the development of the Flexible Resource Allocation Intelligent Decision Software (FRAIDS) building upon the proposed method. Case analysis in an actual grid verifies that the calculations from FRAIDS significantly enhance the entire grid flexibility. Additionally, day-ahead dispatching results indicate that, following ESS allocation, net load fluctuates between 15,295.5 MW and 17,794.9 MW with the conventional method, compared to a more stable range of 16,309.8 MW to 17,417.4 MW with the proposed method. This shows that the proposed method effectively reduces net load fluctuations, thereby significantly alleviating flexible ramping pressure on thermal units.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信