Surface characterization of bis-amide calix[4]arene doped SWCNT nanocomposite and its application as an electrochemical sensor for the determination of Al3+ ion

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
A. Rouis , M. Echabaane , S. Khlifi , I. Bonnamour
{"title":"Surface characterization of bis-amide calix[4]arene doped SWCNT nanocomposite and its application as an electrochemical sensor for the determination of Al3+ ion","authors":"A. Rouis ,&nbsp;M. Echabaane ,&nbsp;S. Khlifi ,&nbsp;I. Bonnamour","doi":"10.1016/j.ijoes.2024.100890","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the optical, wettability, morphological and sensing properties of the chromogenic bis-amide calix[4]arene-SWCNT nanocomposite thin film. Nanocomposite solution was done by mixing single-walled carbon nanotubes with 5,17-bis(phenylazo)-26,28 bis{[(ethoxycarbonyl)methylcarbamoyl] methoxy}-25,27-di(ethoxycarbonylmethoxy)-calix[4]arene in chlorobenzene. The possible interactions between bis-amide calixarene and SWCNT that may be responsible for enhancement in certain properties of the nanocomposite were highlighted. Firstly, the surface of the modified electrode was characterized by using UV–visible spectrophotometer and contact angle measurement (CAM). The effect of the SWCNT loading in the solution and the heating process on the film properties plays a crucial role in the optical and wettability properties of the CNTs based films. Then, morphological study was examined before and after CNT incorporation by using scanning electron microscopy. Finally, the sensing properties of bis-amide calix[4]arene-SWCNT thin film coated gold electrode were investigated using electrochemical impedance spectroscopy (EIS) toward the detection of Al<sup>3+</sup> ion.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 1","pages":"Article 100890"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004346","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the optical, wettability, morphological and sensing properties of the chromogenic bis-amide calix[4]arene-SWCNT nanocomposite thin film. Nanocomposite solution was done by mixing single-walled carbon nanotubes with 5,17-bis(phenylazo)-26,28 bis{[(ethoxycarbonyl)methylcarbamoyl] methoxy}-25,27-di(ethoxycarbonylmethoxy)-calix[4]arene in chlorobenzene. The possible interactions between bis-amide calixarene and SWCNT that may be responsible for enhancement in certain properties of the nanocomposite were highlighted. Firstly, the surface of the modified electrode was characterized by using UV–visible spectrophotometer and contact angle measurement (CAM). The effect of the SWCNT loading in the solution and the heating process on the film properties plays a crucial role in the optical and wettability properties of the CNTs based films. Then, morphological study was examined before and after CNT incorporation by using scanning electron microscopy. Finally, the sensing properties of bis-amide calix[4]arene-SWCNT thin film coated gold electrode were investigated using electrochemical impedance spectroscopy (EIS) toward the detection of Al3+ ion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信