YAP1 overexpression aggravates the progress of diabetic retinopathy by activating the TUG1/miR-144–3p/VEGFA signaling pathway in the hypoxia-induced DR MRMECs model
{"title":"YAP1 overexpression aggravates the progress of diabetic retinopathy by activating the TUG1/miR-144–3p/VEGFA signaling pathway in the hypoxia-induced DR MRMECs model","authors":"Ying Yang","doi":"10.1016/j.tice.2024.102620","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic retinopathy (DR) has been proven to be a leading cause of blindness. This study aimed to investigate the effect of Yes-associated protein 1 (YAP1) on the hypoxia-induced DR mice retinal microvascular endothelial cells (MRMECs) model. The hypoxia-induced DR MRMECs model was generated by treating in hypoxia circumstance (5 % CO<sub>2</sub> and 3 % O<sub>2</sub>) for 48 h. This study constructed YAP1 overexpression and taurine-upregulated gene 1 (TUG1) silencing lentiviral vectors, both of which were used to infect the DR MRMECs model. Quantitative real-time PCR (qRT-PCR) was used to amplify the YAP1, TUG1, vascular endothelial growth factor A (VEGFA), and miR-144–3p gene. Western blot was used to identify the expression of YAP1 and VEGFA. The CCK-8 assay was used to evaluate proliferation and the flow cytometry assay was used to determine apoptosis of MRMECs. Cell migration and tube formation were also evaluated. The results showed that YAP1 overexpression and TUG1 silencing lentivirus were successfully constructed. YAP1 overexpression significantly promoted, but TUG1 silence inhibited cell proliferation and migration compared to DR MRMECs model (<em>P</em><0.05). YAP1 markedly promoted TUG1/VEGFA and reduced miR-144–3p gene transcription compared to those of the DR MRMECs model (<em>P</em><0.05). YA<em>P</em>1 overexpression and TUG1 silence demonstrated the opposite effects on VEGFA expression. YAP1 overexpression obviously promoted tube formation of MRMECs. In conclusion, overexpression of YAP1 promoted cell proliferation, cell migration, TUG1 and VEGFA expression, and reduced the transcription of the miR-144–3p gene in DR MRMECs. Overexpression of YAP1 aggravated the progress of DR in MRMECs by activating the TUG1/miR-144–3p/VEGFA signaling pathway.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"92 ","pages":"Article 102620"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003215","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) has been proven to be a leading cause of blindness. This study aimed to investigate the effect of Yes-associated protein 1 (YAP1) on the hypoxia-induced DR mice retinal microvascular endothelial cells (MRMECs) model. The hypoxia-induced DR MRMECs model was generated by treating in hypoxia circumstance (5 % CO2 and 3 % O2) for 48 h. This study constructed YAP1 overexpression and taurine-upregulated gene 1 (TUG1) silencing lentiviral vectors, both of which were used to infect the DR MRMECs model. Quantitative real-time PCR (qRT-PCR) was used to amplify the YAP1, TUG1, vascular endothelial growth factor A (VEGFA), and miR-144–3p gene. Western blot was used to identify the expression of YAP1 and VEGFA. The CCK-8 assay was used to evaluate proliferation and the flow cytometry assay was used to determine apoptosis of MRMECs. Cell migration and tube formation were also evaluated. The results showed that YAP1 overexpression and TUG1 silencing lentivirus were successfully constructed. YAP1 overexpression significantly promoted, but TUG1 silence inhibited cell proliferation and migration compared to DR MRMECs model (P<0.05). YAP1 markedly promoted TUG1/VEGFA and reduced miR-144–3p gene transcription compared to those of the DR MRMECs model (P<0.05). YAP1 overexpression and TUG1 silence demonstrated the opposite effects on VEGFA expression. YAP1 overexpression obviously promoted tube formation of MRMECs. In conclusion, overexpression of YAP1 promoted cell proliferation, cell migration, TUG1 and VEGFA expression, and reduced the transcription of the miR-144–3p gene in DR MRMECs. Overexpression of YAP1 aggravated the progress of DR in MRMECs by activating the TUG1/miR-144–3p/VEGFA signaling pathway.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.