Jinan Liu , Jiran Wang , Rui Huang , Xueting Jia , Xiaofeng Huang
{"title":"The Shh-p38-NFATc1 signaling pathway is essential for osteoclastogenesis during tooth eruption","authors":"Jinan Liu , Jiran Wang , Rui Huang , Xueting Jia , Xiaofeng Huang","doi":"10.1016/j.tice.2024.102643","DOIUrl":null,"url":null,"abstract":"<div><div>Tooth eruption, a critical stage in tooth development, is related to osteoclastogenesis. Intraperitoneal injection of Shh agonists into neonatal mice promoted tooth eruption at postnatal day (PN) 15, whereas treatment with the Shh inhibitor (LDE225) suppressed this process. When RAW264.7 osteoclast precursor cells were treated with RANKL, NFATc1 translocated from the cytoplasm to the nucleus and induced cell differentiation into TRAP<sup>+</sup> osteoclasts; this process was activated by Shh but inhibited by LDE225. Treating RAW264.7 cells with the p38 inhibitor, BIRB796, also inhibited NFATc1 nuclear localization. p-p38 expression in the alveolar bone of PN3 and PN5 mice was decreased by treatment with LDE225, and RAW264.7 cell differentiation was reduced by BIRB796, regardless of treatment with Shh. Furthermore, Shh activated p38 signaling pathway in RAW264.7 cells, while p38 phosphorylation was reduced by LDE225, which ultimately inhibited osteoclast precursor differentiation. Therefore, we concluded that Shh promotes osteoclast precursor differentiation via the p38-NFATc1 signaling pathway.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"92 ","pages":"Article 102643"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003446","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tooth eruption, a critical stage in tooth development, is related to osteoclastogenesis. Intraperitoneal injection of Shh agonists into neonatal mice promoted tooth eruption at postnatal day (PN) 15, whereas treatment with the Shh inhibitor (LDE225) suppressed this process. When RAW264.7 osteoclast precursor cells were treated with RANKL, NFATc1 translocated from the cytoplasm to the nucleus and induced cell differentiation into TRAP+ osteoclasts; this process was activated by Shh but inhibited by LDE225. Treating RAW264.7 cells with the p38 inhibitor, BIRB796, also inhibited NFATc1 nuclear localization. p-p38 expression in the alveolar bone of PN3 and PN5 mice was decreased by treatment with LDE225, and RAW264.7 cell differentiation was reduced by BIRB796, regardless of treatment with Shh. Furthermore, Shh activated p38 signaling pathway in RAW264.7 cells, while p38 phosphorylation was reduced by LDE225, which ultimately inhibited osteoclast precursor differentiation. Therefore, we concluded that Shh promotes osteoclast precursor differentiation via the p38-NFATc1 signaling pathway.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.