A modified PSO based hybrid deep learning approach to predict AQI of urban metropolis

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Nairita Sarkar, Pankaj Kumar Keserwani, Mahesh Chandra Govil
{"title":"A modified PSO based hybrid deep learning approach to predict AQI of urban metropolis","authors":"Nairita Sarkar,&nbsp;Pankaj Kumar Keserwani,&nbsp;Mahesh Chandra Govil","doi":"10.1016/j.uclim.2024.102212","DOIUrl":null,"url":null,"abstract":"<div><div>Environment and human health are seriously threatened by air pollution. The effects of air pollution are more severe in metropolitan areas due to the presence of harmful pollutants. The goal of this work is to forecast the Air Quality Index (AQI), of 15 metropolitan cities in India and analyze various air pollutants that are mostly responsible for higher levels of air pollution in a particular city. Firstly, air quality data from 15 metropolitan cities were gathered and preprocessed appropriately. The prediction models were then trained using the preprocessed dataset. Modified Particle Swarm Optimization (MPSO)-based two hybrid deep learning models: Long-Short Term Memory (LSTM) along with Bi-directional Recurrent Neural Network (BiRNN) and LSTM along with Gated Recurrent Unit (GRU) are proposed and the experimental analysis demonstrated that the proposed MPSO-LSTM-BiRNN and MPSO-LSTM-GRU models outperformed the other models' performance in terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) values. MPSO-LSTM-BiRNN model provides MSE, RMSE, MAE, and MAPE of 0.000184, 0.0135, 0.0088, and 27.69 % respectively whereas, the MPSO-LSTM-GRU model gives MSE, RMSE, MAE, and MAPE of 0.000188, 0.0137, 0.0091 and 26.16 % respectively.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"58 ","pages":"Article 102212"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524004097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Environment and human health are seriously threatened by air pollution. The effects of air pollution are more severe in metropolitan areas due to the presence of harmful pollutants. The goal of this work is to forecast the Air Quality Index (AQI), of 15 metropolitan cities in India and analyze various air pollutants that are mostly responsible for higher levels of air pollution in a particular city. Firstly, air quality data from 15 metropolitan cities were gathered and preprocessed appropriately. The prediction models were then trained using the preprocessed dataset. Modified Particle Swarm Optimization (MPSO)-based two hybrid deep learning models: Long-Short Term Memory (LSTM) along with Bi-directional Recurrent Neural Network (BiRNN) and LSTM along with Gated Recurrent Unit (GRU) are proposed and the experimental analysis demonstrated that the proposed MPSO-LSTM-BiRNN and MPSO-LSTM-GRU models outperformed the other models' performance in terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) values. MPSO-LSTM-BiRNN model provides MSE, RMSE, MAE, and MAPE of 0.000184, 0.0135, 0.0088, and 27.69 % respectively whereas, the MPSO-LSTM-GRU model gives MSE, RMSE, MAE, and MAPE of 0.000188, 0.0137, 0.0091 and 26.16 % respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信