{"title":"Long time stability of fractional nonlinear Schrödinger equations","authors":"Xue Yang, Jing Zhang, Jieyu Liu","doi":"10.1016/j.jmaa.2024.129035","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the long time stability of the solutions to the fractional nonlinear Schrödinger (FNLS) equation under periodic boundary condition<span><span><span><math><mi>i</mi><msub><mrow><mi>ψ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mi>ψ</mi><mo>+</mo><mfrac><mrow><mo>∂</mo><mi>F</mi><mo>(</mo><mo>|</mo><mi>ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>∂</mo><mover><mrow><mi>ψ</mi></mrow><mo>‾</mo></mover></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>3</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span> denotes the Riesz fractional differentiation defined in <span><span>[18]</span></span>. Here <span><math><mi>F</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> is a real-valued polynomial function of <em>z</em>, fulfilling <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></math></span>. Our findings indicate that for all <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>3</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> and almost all <em>R</em>-small initial data in Sobolev norm, the corresponding solutions remain their small magnitude over time-intervals of length <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>−</mo><mo>|</mo><mi>ln</mi><mo></mo><mi>R</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup></math></span> with <span><math><mn>0</mn><mo><</mo><mi>R</mi><mo>≪</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129035"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009570","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the long time stability of the solutions to the fractional nonlinear Schrödinger (FNLS) equation under periodic boundary condition where denotes the Riesz fractional differentiation defined in [18]. Here is a real-valued polynomial function of z, fulfilling , . Our findings indicate that for all and almost all R-small initial data in Sobolev norm, the corresponding solutions remain their small magnitude over time-intervals of length with , .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.