{"title":"Fixed effects spatial panel interval-valued autoregressive models and applications","authors":"Qingqing Li, Ruizhuo Zheng, Aibing Ji, Hongyan Ma","doi":"10.1016/j.spasta.2024.100875","DOIUrl":null,"url":null,"abstract":"<div><div>Interval-valued data has garnered attention across various applications, leading to increased research into spatial interval-valued data models. The integration of uncertainty variables into spatial panel data models has become crucial. This paper presents a spatial panel interval-valued autoregressive model with fixed effects, utilizing the parametric method. The quasi-maximum likelihood method is employed for parameter estimation, and its consistency and asymptotic properties are discussed. Additionally, three special cases and two degenerated models derived from our framework are presented, elucidating their significance in spatial statistics. Monte Carlo simulations are used to validate the fitting and forecasting performance of our proposed models across diverse scenarios. Furthermore, the models are implemented in real-world air quality and house price datasets for forecasting purposes. Through rigorous experimentation, the superior performance of the models is demonstrated. These results highlight the practical utility of the spatial panel interval-valued autoregressive models in addressing spatial data challenges.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"65 ","pages":"Article 100875"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000666","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interval-valued data has garnered attention across various applications, leading to increased research into spatial interval-valued data models. The integration of uncertainty variables into spatial panel data models has become crucial. This paper presents a spatial panel interval-valued autoregressive model with fixed effects, utilizing the parametric method. The quasi-maximum likelihood method is employed for parameter estimation, and its consistency and asymptotic properties are discussed. Additionally, three special cases and two degenerated models derived from our framework are presented, elucidating their significance in spatial statistics. Monte Carlo simulations are used to validate the fitting and forecasting performance of our proposed models across diverse scenarios. Furthermore, the models are implemented in real-world air quality and house price datasets for forecasting purposes. Through rigorous experimentation, the superior performance of the models is demonstrated. These results highlight the practical utility of the spatial panel interval-valued autoregressive models in addressing spatial data challenges.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.