Wen-Liang Zuo , Adil Murtaza , Chao Zhou , Awais Ghani , Yin Zhang , Sen Yang
{"title":"Multiphase critical point type phase boundary induced superior magnetocaloric properties in ferromagnetic Tb1-xGdxCo2 alloys","authors":"Wen-Liang Zuo , Adil Murtaza , Chao Zhou , Awais Ghani , Yin Zhang , Sen Yang","doi":"10.1016/j.matlet.2024.137792","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we report an exotic combination of magnetic entropy change (Δ<em>S</em><sub>M</sub> =4.56 Jkg<sup>-1</sup>K<sup>−1</sup>), refrigerant capacity (RC=190.6 J kg<sup>−1</sup>) and adiabatic temperature change (Δ<em>T</em><sub>ad</sub>=6.8 K) for varying magnetic fields (ΔH) from 0 to 5 T, with near-zero hysteresis loss at the critical point of multiphase coexistence of rhombohedral, cubic and tetragonal phases at x=0.9 in Tb<sub>1−x</sub>Gd<sub>x</sub>Co<sub>2</sub> alloys. Additionally, the Δ<em>S</em><sub>M</sub> curves cover a broad temperature range of 42 K. Further analysis demonstrates that the excellent magnetocaloric performance observed at the multiphase coexistence point stems from the flattening free energy, which provides minimal energy barriers, enabling magnetic spins to switch between different crystal symmetries.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"381 ","pages":"Article 137792"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24019323","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we report an exotic combination of magnetic entropy change (ΔSM =4.56 Jkg-1K−1), refrigerant capacity (RC=190.6 J kg−1) and adiabatic temperature change (ΔTad=6.8 K) for varying magnetic fields (ΔH) from 0 to 5 T, with near-zero hysteresis loss at the critical point of multiphase coexistence of rhombohedral, cubic and tetragonal phases at x=0.9 in Tb1−xGdxCo2 alloys. Additionally, the ΔSM curves cover a broad temperature range of 42 K. Further analysis demonstrates that the excellent magnetocaloric performance observed at the multiphase coexistence point stems from the flattening free energy, which provides minimal energy barriers, enabling magnetic spins to switch between different crystal symmetries.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive