Ahmed A. Alawi Al-Naghi , Nejib Ghazouani , Abdellatif Selmi , Ali Raza , Mohd Ahmed
{"title":"Mechanical and microstructural characterization of recycled aggregate geopolymer concrete having high strength and recycled tire steel wire fibers","authors":"Ahmed A. Alawi Al-Naghi , Nejib Ghazouani , Abdellatif Selmi , Ali Raza , Mohd Ahmed","doi":"10.1016/j.matlet.2024.137787","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical and microstructural properties of recycled aggregate geopolymer concrete (RAGC) that contains high-strength steel wire fibers (HSWF), recycled tire steel fibers (RTF), or a mix of the two as hybrid fibers are investigated in this study. Using scanning electron microscopy (SEM) analysis, the study examines microstructure, flexural toughness, compressive strength, and stress–strain response. By volume, metallic fiber additions ranged from 0.5 % to 1.5 %. Results showed that the HSWF1.5 mix achieved the highest mechanical strength of 56.27 MPa at 28 days, a 16.18 % increase over the mix having no fibers i.e., the Control mix. Toughness increased by 59 % in the mix with 1.5 % hybrid fibers i.e., HF1.5 mix, underscoring the significant durability enhancement from fibers.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"381 ","pages":"Article 137787"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X2401927X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical and microstructural properties of recycled aggregate geopolymer concrete (RAGC) that contains high-strength steel wire fibers (HSWF), recycled tire steel fibers (RTF), or a mix of the two as hybrid fibers are investigated in this study. Using scanning electron microscopy (SEM) analysis, the study examines microstructure, flexural toughness, compressive strength, and stress–strain response. By volume, metallic fiber additions ranged from 0.5 % to 1.5 %. Results showed that the HSWF1.5 mix achieved the highest mechanical strength of 56.27 MPa at 28 days, a 16.18 % increase over the mix having no fibers i.e., the Control mix. Toughness increased by 59 % in the mix with 1.5 % hybrid fibers i.e., HF1.5 mix, underscoring the significant durability enhancement from fibers.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive