Crossover from single to two-peak fundamental solitons in nonlocal nonlinear media

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Ameer B. Batarseh , M. Javad Zakeri , Andrea Blanco-Redondo , Marek Trippenbach , David Hagan , Wieslaw Krolikowski , Pawel S. Jung
{"title":"Crossover from single to two-peak fundamental solitons in nonlocal nonlinear media","authors":"Ameer B. Batarseh ,&nbsp;M. Javad Zakeri ,&nbsp;Andrea Blanco-Redondo ,&nbsp;Marek Trippenbach ,&nbsp;David Hagan ,&nbsp;Wieslaw Krolikowski ,&nbsp;Pawel S. Jung","doi":"10.1016/j.wavemoti.2024.103445","DOIUrl":null,"url":null,"abstract":"<div><div>Bright solitons with two in-phase peaks can form in a nonlinear homogeneous medium due to competing nonlocal interactions. This study explores the emergence and transformation of these solitons, considering both additive and multiplicative models for the competing nonlinear self-focusing and self-defocusing effects. We show that high input power can trigger the formation of the stable, double-peaked solitons. Furthermore, we introduce a semi-analytical approach (SAA) to accurately predict the critical conditions where single-peak solitons transition to double-peak ones. The SAA combines the variational approach with a linear eigenmode solver, achieving good agreement with exact simulations while being significantly faster. Our work emphasizes the importance of nonlocality in soliton formation and introduces SAA as a valuable tool for future investigations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"133 ","pages":"Article 103445"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001756","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bright solitons with two in-phase peaks can form in a nonlinear homogeneous medium due to competing nonlocal interactions. This study explores the emergence and transformation of these solitons, considering both additive and multiplicative models for the competing nonlinear self-focusing and self-defocusing effects. We show that high input power can trigger the formation of the stable, double-peaked solitons. Furthermore, we introduce a semi-analytical approach (SAA) to accurately predict the critical conditions where single-peak solitons transition to double-peak ones. The SAA combines the variational approach with a linear eigenmode solver, achieving good agreement with exact simulations while being significantly faster. Our work emphasizes the importance of nonlocality in soliton formation and introduces SAA as a valuable tool for future investigations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信