Exotic coherent structures and their collisional dynamics in a (3+1) dimensional Bogoyavlensky–Konopelchenko equation

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
C. Senthil Kumar , R. Radha
{"title":"Exotic coherent structures and their collisional dynamics in a (3+1) dimensional Bogoyavlensky–Konopelchenko equation","authors":"C. Senthil Kumar ,&nbsp;R. Radha","doi":"10.1016/j.wavemoti.2024.103456","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we analyse the (3+1) dimensional Bogoyavlensky–Konopelchenko equation. Using Painlevé Truncation approach, we have constructed solutions in terms of lower dimensional arbitrary functions of space and time. By suitably harnessing the arbitrary functions present in the solution, we have generated physically interesting solutions like periodic solutions, kinks, linear rogue waves, line lumps, dipole lumps and hybrid dromions. It is interesting to note that unlike in (2+1) dimensional nonlinear partial differential equations, the line lumps interact and undergo elastic collision without exchange of energy which is confirmed by the asymptotic analysis. The hybrid dromions are also found to retain their amplitudes during interaction undergoing elastic collision. The highlight of the results is that one also observes the two nonparallel ghost solitons as well whose intersection gives rise to hybrid dromions, a phenomenon not witnessed in (2+1) dimensions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"133 ","pages":"Article 103456"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001860","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyse the (3+1) dimensional Bogoyavlensky–Konopelchenko equation. Using Painlevé Truncation approach, we have constructed solutions in terms of lower dimensional arbitrary functions of space and time. By suitably harnessing the arbitrary functions present in the solution, we have generated physically interesting solutions like periodic solutions, kinks, linear rogue waves, line lumps, dipole lumps and hybrid dromions. It is interesting to note that unlike in (2+1) dimensional nonlinear partial differential equations, the line lumps interact and undergo elastic collision without exchange of energy which is confirmed by the asymptotic analysis. The hybrid dromions are also found to retain their amplitudes during interaction undergoing elastic collision. The highlight of the results is that one also observes the two nonparallel ghost solitons as well whose intersection gives rise to hybrid dromions, a phenomenon not witnessed in (2+1) dimensions.

Abstract Image

(3+1)维Bogoyavlensky-Konopelchenko方程中的奇异相干结构及其碰撞动力学
本文分析了(3+1)维Bogoyavlensky-Konopelchenko方程。利用painlev截断法,我们用空间和时间的低维任意函数构造了解。通过适当地利用解中存在的任意函数,我们生成了物理上有趣的解,如周期解、扭结、线性异常波、线块、偶极子块和混合子。有趣的是,与(2+1)维非线性偏微分方程不同,线块相互作用并进行弹性碰撞而不交换能量,这一点由渐近分析证实。在发生弹性碰撞的相互作用中,杂化子的振幅也保持不变。结果的亮点是,人们还观察到两个非平行鬼孤子,它们的交集会产生混合子,这是在(2+1)维度中没有看到的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信