Preparation of ZnO nanoparticles from Juglans regia dry husk extract for biomedical applications

Q1 Social Sciences
Khetam Habeeb Rasool , Wedian K. Abad , Ahmed N. Abd
{"title":"Preparation of ZnO nanoparticles from Juglans regia dry husk extract for biomedical applications","authors":"Khetam Habeeb Rasool ,&nbsp;Wedian K. Abad ,&nbsp;Ahmed N. Abd","doi":"10.1016/j.jobb.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>The worldwide problem of antibiotic resistance threatens public health, necessitating the search for antimicrobial agents that are not only effective against antibiotic-resistant bacteria but also harmless to the environment. Metal nanoparticles and their oxides are promising agents for battling antibiotic-resistant bacteria, and nanoparticles (NPs) of any size or form can be manufactured in high quality using low-cost and simple-to-follow processes that are friendly to the<!--> <!-->environment. The purpose of this study was to evaluate the antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) that were synthesized using the extract of Juglans regia dried husk, a waste product. Extract components were<!--> <!-->used as capping and reducing agents in reactions with zinc acetate salt. The properties of ZnO NPs were examined using Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The antibacterial activity ZnO NPs against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Candida albicans, which were isolated from patients with urinary tract infection, was assessed using the agar well diffusion method.<!--> <!-->ZnO NPs produced using the aqueous extract of Juglans regia dried husk had a band gap of 3.5 eV, which was determined using UV–visible spectra in the wavelength range of 200–1100 nm. The FTIR spectra of ZnO NPs, acquired in the range of 400–4000 cm<sup>−1</sup>, contained bands corresponding to specific functional groups of biomolecules and metal oxides. X-ray patterns were acquired in the range of 2θ = 20° to 80°. The crystallite size of produced ZnO NPs, calculated using Scherrer’s formula, was 8.7 nm. The wurtzite hexagonal structure of ZnO NPs was confirmed by the presence of the wide band at 495 to 850 cm<sup>−1</sup>. The peaks in the XRD pattern corresponded to the (100), (002), (101), (110), (103), and (201) planes. Prepared nanoparticles were semispherical, with a grain diameter of approximately 23 nm and mean roughness (Sa) of 1.65 nm. According to the results of antibacterial testing, ZnO NPs exhibited the greatest growth inhibition effect against Staphylococcus epidermidis, followed by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Candida albicans (diameter of inhibition zones of 37 ± 0.89, 35.6 ± 0.52, 33.3 ± 1.36, and 35 ± 0.89 mm, respectively). ZnO NPs exhibited significant antibacterial activity owing to their distinct toxicity toward microorganisms. Hence, they can be applied as antimicrobial agents in medicine, surgery, diagnostics, and nanomedicine.</div></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"7 1","pages":"Pages 1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933824000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The worldwide problem of antibiotic resistance threatens public health, necessitating the search for antimicrobial agents that are not only effective against antibiotic-resistant bacteria but also harmless to the environment. Metal nanoparticles and their oxides are promising agents for battling antibiotic-resistant bacteria, and nanoparticles (NPs) of any size or form can be manufactured in high quality using low-cost and simple-to-follow processes that are friendly to the environment. The purpose of this study was to evaluate the antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) that were synthesized using the extract of Juglans regia dried husk, a waste product. Extract components were used as capping and reducing agents in reactions with zinc acetate salt. The properties of ZnO NPs were examined using Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The antibacterial activity ZnO NPs against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Candida albicans, which were isolated from patients with urinary tract infection, was assessed using the agar well diffusion method. ZnO NPs produced using the aqueous extract of Juglans regia dried husk had a band gap of 3.5 eV, which was determined using UV–visible spectra in the wavelength range of 200–1100 nm. The FTIR spectra of ZnO NPs, acquired in the range of 400–4000 cm−1, contained bands corresponding to specific functional groups of biomolecules and metal oxides. X-ray patterns were acquired in the range of 2θ = 20° to 80°. The crystallite size of produced ZnO NPs, calculated using Scherrer’s formula, was 8.7 nm. The wurtzite hexagonal structure of ZnO NPs was confirmed by the presence of the wide band at 495 to 850 cm−1. The peaks in the XRD pattern corresponded to the (100), (002), (101), (110), (103), and (201) planes. Prepared nanoparticles were semispherical, with a grain diameter of approximately 23 nm and mean roughness (Sa) of 1.65 nm. According to the results of antibacterial testing, ZnO NPs exhibited the greatest growth inhibition effect against Staphylococcus epidermidis, followed by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Candida albicans (diameter of inhibition zones of 37 ± 0.89, 35.6 ± 0.52, 33.3 ± 1.36, and 35 ± 0.89 mm, respectively). ZnO NPs exhibited significant antibacterial activity owing to their distinct toxicity toward microorganisms. Hence, they can be applied as antimicrobial agents in medicine, surgery, diagnostics, and nanomedicine.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biosafety and Biosecurity
Journal of Biosafety and Biosecurity Social Sciences-Linguistics and Language
CiteScore
6.00
自引率
0.00%
发文量
20
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信