Yitong Zhang , Jiaqi Chen , Jiansheng Chen , Wang Wang
{"title":"Inter-basin groundwater flow in the Ordos Basin: Evidence of environmental isotope and hydrological investigations","authors":"Yitong Zhang , Jiaqi Chen , Jiansheng Chen , Wang Wang","doi":"10.1016/j.gsf.2024.101967","DOIUrl":null,"url":null,"abstract":"<div><div>The Ordos Basin, located in arid and semi-arid region of China, is famous for its abundant groundwater resources and artesian features. The source of groundwater recharge, whether from local precipitation or external sources, has been debated. This study aims to elucidate the groundwater circulation mechanism in the Ordos Basin through scientific expedition, environmental isotope method, and hydrological drilling exploration, providing valuable insights for other artesian basins. Comprehensive analysis indicates that groundwater in the Ordos Basin is recharged by modern precipitation, primarily from high-elevation areas outside the basin. Deep groundwater from these external sources ascends to the aquifer through basement fault zones. Evidence from hydrogen and oxygen isotopes, hydraulic gradients, and water quantities suggests that the Tibetan Plateau is the most potential recharge source. Based on the distribution of Cenozoic basalt and data from seismic observation wells, we propose that leakage water from the Tibetan Plateau rift valley is transported to the Ordos Basin through fast channels, possibly lava tubes, and then upwelling through basement fault zones. This work provides a new perspective on the mechanism of inter-basin groundwater circulation.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 1","pages":"Article 101967"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124001919","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Ordos Basin, located in arid and semi-arid region of China, is famous for its abundant groundwater resources and artesian features. The source of groundwater recharge, whether from local precipitation or external sources, has been debated. This study aims to elucidate the groundwater circulation mechanism in the Ordos Basin through scientific expedition, environmental isotope method, and hydrological drilling exploration, providing valuable insights for other artesian basins. Comprehensive analysis indicates that groundwater in the Ordos Basin is recharged by modern precipitation, primarily from high-elevation areas outside the basin. Deep groundwater from these external sources ascends to the aquifer through basement fault zones. Evidence from hydrogen and oxygen isotopes, hydraulic gradients, and water quantities suggests that the Tibetan Plateau is the most potential recharge source. Based on the distribution of Cenozoic basalt and data from seismic observation wells, we propose that leakage water from the Tibetan Plateau rift valley is transported to the Ordos Basin through fast channels, possibly lava tubes, and then upwelling through basement fault zones. This work provides a new perspective on the mechanism of inter-basin groundwater circulation.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.