Acoustic-induced flow on the evaporation dynamics of twin drops

IF 3.6 2区 工程技术 Q1 MECHANICS
Aadil Kureshee, S. Narayanan, Deepak Kumar Mandal
{"title":"Acoustic-induced flow on the evaporation dynamics of twin drops","authors":"Aadil Kureshee,&nbsp;S. Narayanan,&nbsp;Deepak Kumar Mandal","doi":"10.1016/j.ijmultiphaseflow.2024.105070","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aims to investigate the effect of an acoustic field on the internal circulation and evaporation of three distinct combinations of twin methanol drops. The drop combinations used for making twin drops are (i) methanol and water (i.e., 15% and 75% of methanol), (ii) pure methanol, (iii) one pure methanol, and methanol-water (15 % and 75 % of methanol). The studies are conducted for two different drop spacings of 0.5 and 1.5 cm. The results suggest that the higher spacing (i.e., 1.5 cm) produced a stronger acoustic streaming effect than the lower one (i.e., 0.5 cm) for all the twin drop combinations, which indicates higher internal circulation at a larger spacing of 1.5 cm. For all the spacings, the evaporation rate is observed to be proportional to the internal circulation at all twin drop combinations. Further, empirical correlations are developed to predict the evaporation rate and internal circulation for twin drops with different combinations. The study shows that the evaporation and internal circulation follow a universal behavior for all the combinations of twin drops at both the drop spacings, while the higher values are observed at a larger spacing of 1.5 cm compared to the smaller one of 0.5 cm. The paper clearly demonstrates the complex interplay of variables involved in the evaporation / internal circulation of twin methanol drops under the influence of an acoustic field, thus producing a universal behaviour that is independent of their composition for both the drop spacings.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"183 ","pages":"Article 105070"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222400346X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to investigate the effect of an acoustic field on the internal circulation and evaporation of three distinct combinations of twin methanol drops. The drop combinations used for making twin drops are (i) methanol and water (i.e., 15% and 75% of methanol), (ii) pure methanol, (iii) one pure methanol, and methanol-water (15 % and 75 % of methanol). The studies are conducted for two different drop spacings of 0.5 and 1.5 cm. The results suggest that the higher spacing (i.e., 1.5 cm) produced a stronger acoustic streaming effect than the lower one (i.e., 0.5 cm) for all the twin drop combinations, which indicates higher internal circulation at a larger spacing of 1.5 cm. For all the spacings, the evaporation rate is observed to be proportional to the internal circulation at all twin drop combinations. Further, empirical correlations are developed to predict the evaporation rate and internal circulation for twin drops with different combinations. The study shows that the evaporation and internal circulation follow a universal behavior for all the combinations of twin drops at both the drop spacings, while the higher values are observed at a larger spacing of 1.5 cm compared to the smaller one of 0.5 cm. The paper clearly demonstrates the complex interplay of variables involved in the evaporation / internal circulation of twin methanol drops under the influence of an acoustic field, thus producing a universal behaviour that is independent of their composition for both the drop spacings.

Abstract Image

声诱导流动对双液滴蒸发动力学的影响
本研究旨在探讨声场对三种不同组合的双甲醇滴的内循环和蒸发的影响。用于制造双液滴的液滴组合是(i)甲醇和水(即15%和75%的甲醇),(ii)纯甲醇,(iii)一纯甲醇和甲醇-水(15%和75%的甲醇)。研究采用了0.5 cm和1.5 cm两种不同的落差间距。结果表明,对于所有双滴组合,高间距(1.5 cm)比低间距(0.5 cm)产生更强的声流效应,这表明在1.5 cm的大间距下,内部循环更高。对于所有的间距,在所有的双液滴组合中,蒸发速率被观察到与内部循环成正比。此外,还建立了经验相关性来预测不同组合的双液滴的蒸发速率和内循环。研究表明,在两种液滴间距下,所有双液滴组合的蒸发和内循环都遵循一个普遍的行为,而在1.5 cm的大间距下,蒸发和内循环的值要高于0.5 cm的小间距。本文清楚地展示了在声场影响下双甲醇液滴蒸发/内部循环中涉及的变量的复杂相互作用,从而产生了一种与液滴间距的组成无关的普遍行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信