Jieming S. Zhang , Yun Deng , Huifang Liu , Yuanbo T. Tang , Andrew Lui , Patrick S. Grant , Enrique Alabort , Roger C. Reed , Alan C.F. Cocks
{"title":"Orientation matters: Assessing the cyclic deformation behaviour of laser powder bed fusion Ti-6Al-4V","authors":"Jieming S. Zhang , Yun Deng , Huifang Liu , Yuanbo T. Tang , Andrew Lui , Patrick S. Grant , Enrique Alabort , Roger C. Reed , Alan C.F. Cocks","doi":"10.1016/j.matdes.2024.113485","DOIUrl":null,"url":null,"abstract":"<div><div>The orientation dependency of the fatigue behaviour of laser powder bed fusion Ti-6Al-4V has been analyzed and rationalized. Seven build orientations relative to the build plate have been studied. The 75° specimen demonstrates the highest fatigue life owing to the optimal surface quality and low proportions of grains near-parallel to the loading direction. When the build orientation is 30° or below, only defects on the downward-facing surface serve as the fatigue crack initiation sites as a result of the poor surface quality. Beyond 45°, cracks begin to initiate from the otherward-facing surface owing to the reduced variation in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> across the sample surface. The large variation in the size and number of pore clusters near the initiation site governs the highest fatigue scatter of the 75° specimen whereas the difference in crack initiation sites of the 45° specimen results in the large difference in fatigue life. Our results demonstrate that the orientation effect is a critical factor to consider for the design of fatigue-tolerant intricate components.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113485"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008608","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The orientation dependency of the fatigue behaviour of laser powder bed fusion Ti-6Al-4V has been analyzed and rationalized. Seven build orientations relative to the build plate have been studied. The 75° specimen demonstrates the highest fatigue life owing to the optimal surface quality and low proportions of grains near-parallel to the loading direction. When the build orientation is 30° or below, only defects on the downward-facing surface serve as the fatigue crack initiation sites as a result of the poor surface quality. Beyond 45°, cracks begin to initiate from the otherward-facing surface owing to the reduced variation in across the sample surface. The large variation in the size and number of pore clusters near the initiation site governs the highest fatigue scatter of the 75° specimen whereas the difference in crack initiation sites of the 45° specimen results in the large difference in fatigue life. Our results demonstrate that the orientation effect is a critical factor to consider for the design of fatigue-tolerant intricate components.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.