Snow and nitrogen manipulation do not alter the dominant role of fungi in the N2O production of biocrusts in a temperate desert

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Yongxing Lu, Benfeng Yin, Yonggang Li, Yongxin Zang, Xiaobing Zhou, Yuanming Zhang
{"title":"Snow and nitrogen manipulation do not alter the dominant role of fungi in the N2O production of biocrusts in a temperate desert","authors":"Yongxing Lu,&nbsp;Benfeng Yin,&nbsp;Yonggang Li,&nbsp;Yongxin Zang,&nbsp;Xiaobing Zhou,&nbsp;Yuanming Zhang","doi":"10.1016/j.apsoil.2024.105766","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of global climate change and human-induced nitrogen (N) deposition on winter weather patterns will have consequences for soil N cycling and greenhouse gas emissions in temperate deserts. Biological soil crusts (referred to as biocrusts) are crucial communities in soil and significant sources of nitrous oxide (N<sub>2</sub>O) emission in desert ecosystems and are sensitive to environmental changes. The contribution of bacteria and fungi to N<sub>2</sub>O production in drylands has been acknowledged. However, the effect of changes in snow cover and N deposition on the N<sub>2</sub>O production of different microbial groups of microorganisms is not yet clear. In this study, we examine the responses of fungi and bacteria mediated pathways involved in soil N<sub>2</sub>O production from biocrusts to long-term snow cover manipulation and N addition experiments in the Gurbantunggut Desert. These soils were incubated and subjected to biocide treatments (such as cycloheximide and streptomycin, and fungal and bacterial inhibitors), after which rates of potential nitrification and N<sub>2</sub>O production were measured. Compared with controls, snow removal treatments from bare sand, lichen crust and moss crust reduced background rates of N<sub>2</sub>O production by 29.41 %, 26.21 % and 20.49 %, respectively; N<sub>2</sub>O production rates were 1.53-fold higher in bare sand, 1.38-fold higher in lichen crust, and 1.56-fold higher in moss crust after N addition. The addition of streptomycin significantly reduced the potential nitrification rates of bare sand and biocrusts, indicating that bacteria may be important sources of NO<sub>3</sub><sup>−</sup> production in biocrusts rather than fungi. Conversely, fungi were main sources of N<sub>2</sub>O production in biocrusts. Additionally, fungi also played a major role in N<sub>2</sub>O production in biocrusts after snow cover manipulation and N addition. Both snow cover manipulation and N addition treatment indirectly affected the N<sub>2</sub>O production in biocrusts by considerably affecting the content of substrate N and the abundance of microbial groups. Our research suggests that fungi are main contributors for denitrification in biocrusts, and that snow cover changes (removal snow and double snow) and N addition alter the contribution of biotic pathways responsible for N cycling.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"205 ","pages":"Article 105766"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324004979","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of global climate change and human-induced nitrogen (N) deposition on winter weather patterns will have consequences for soil N cycling and greenhouse gas emissions in temperate deserts. Biological soil crusts (referred to as biocrusts) are crucial communities in soil and significant sources of nitrous oxide (N2O) emission in desert ecosystems and are sensitive to environmental changes. The contribution of bacteria and fungi to N2O production in drylands has been acknowledged. However, the effect of changes in snow cover and N deposition on the N2O production of different microbial groups of microorganisms is not yet clear. In this study, we examine the responses of fungi and bacteria mediated pathways involved in soil N2O production from biocrusts to long-term snow cover manipulation and N addition experiments in the Gurbantunggut Desert. These soils were incubated and subjected to biocide treatments (such as cycloheximide and streptomycin, and fungal and bacterial inhibitors), after which rates of potential nitrification and N2O production were measured. Compared with controls, snow removal treatments from bare sand, lichen crust and moss crust reduced background rates of N2O production by 29.41 %, 26.21 % and 20.49 %, respectively; N2O production rates were 1.53-fold higher in bare sand, 1.38-fold higher in lichen crust, and 1.56-fold higher in moss crust after N addition. The addition of streptomycin significantly reduced the potential nitrification rates of bare sand and biocrusts, indicating that bacteria may be important sources of NO3 production in biocrusts rather than fungi. Conversely, fungi were main sources of N2O production in biocrusts. Additionally, fungi also played a major role in N2O production in biocrusts after snow cover manipulation and N addition. Both snow cover manipulation and N addition treatment indirectly affected the N2O production in biocrusts by considerably affecting the content of substrate N and the abundance of microbial groups. Our research suggests that fungi are main contributors for denitrification in biocrusts, and that snow cover changes (removal snow and double snow) and N addition alter the contribution of biotic pathways responsible for N cycling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信