Foldamer-mediated transport across phospholipid bilayers

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Iqra Zubair , Luis Martínez-Crespo , Simon J. Webb
{"title":"Foldamer-mediated transport across phospholipid bilayers","authors":"Iqra Zubair ,&nbsp;Luis Martínez-Crespo ,&nbsp;Simon J. Webb","doi":"10.1016/j.cbpa.2024.102549","DOIUrl":null,"url":null,"abstract":"<div><div>Crucial physiological processes, like neural communication and muscle contraction, are mediated by protein channels in cell membranes. These natural channels typically have a central hydrophilic pore with tightly defined dimensions, which can be opened or closed (‘gated’) by external stimuli. Mimicking natural ion channels using synthetic molecules is a long-standing goal in artificial channel research. Although current synthetic channels have not yet achieved the same combination of high activity, high selectivity, and gating as natural channels, foldamers offer a new approach. Foldamers are unnatural oligomers that fold into defined three-dimensional shapes, similar to the way that natural polypeptides fold into secondary structures. With defined shapes and often multi-nanometre dimensions, foldamers have become valuable tools to mimic the behaviour of natural proteins in membranes. This review highlights selected recent examples of foldamer channels, examples that indicate how foldamer architectures may lead to controllable channels with high activity and selectivity.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"84 ","pages":"Article 102549"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136759312400125X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crucial physiological processes, like neural communication and muscle contraction, are mediated by protein channels in cell membranes. These natural channels typically have a central hydrophilic pore with tightly defined dimensions, which can be opened or closed (‘gated’) by external stimuli. Mimicking natural ion channels using synthetic molecules is a long-standing goal in artificial channel research. Although current synthetic channels have not yet achieved the same combination of high activity, high selectivity, and gating as natural channels, foldamers offer a new approach. Foldamers are unnatural oligomers that fold into defined three-dimensional shapes, similar to the way that natural polypeptides fold into secondary structures. With defined shapes and often multi-nanometre dimensions, foldamers have become valuable tools to mimic the behaviour of natural proteins in membranes. This review highlights selected recent examples of foldamer channels, examples that indicate how foldamer architectures may lead to controllable channels with high activity and selectivity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信