Discovering microbiota functions via chemical probe incorporation for targeted sequencing

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Natalie Falco , Matthew E. Griffin
{"title":"Discovering microbiota functions via chemical probe incorporation for targeted sequencing","authors":"Natalie Falco ,&nbsp;Matthew E. Griffin","doi":"10.1016/j.cbpa.2024.102551","DOIUrl":null,"url":null,"abstract":"<div><div>Our microbiota plays crucial roles in immune development and homeostasis and has been implicated in virtually all major diseases of the 21st century. Nevertheless, our understanding of the exact microbial functions that underlie these correlations remains extremely limited, due in large part to the difficulty of profiling cellular activities within non-model organisms and complex communities. Over the past decade, new flow cytometric approaches have been developed to distinguish specific microbial populations based on their interactions with metabolite analogs, modified biomolecules, and reactive compounds. By selecting and separating active microbes via fluorescence-activated cell sorting, PRobe INcorporation for Targeted sequencing (PRINT-seq) has inspired innovative approaches to identify and characterize functional members of our microbiota. Here, we provide a broad overview of this evolving technology and summarize how this method has been recently employed as a diagnostic fingerprint for diverse microbial activities.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"84 ","pages":"Article 102551"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124001273","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our microbiota plays crucial roles in immune development and homeostasis and has been implicated in virtually all major diseases of the 21st century. Nevertheless, our understanding of the exact microbial functions that underlie these correlations remains extremely limited, due in large part to the difficulty of profiling cellular activities within non-model organisms and complex communities. Over the past decade, new flow cytometric approaches have been developed to distinguish specific microbial populations based on their interactions with metabolite analogs, modified biomolecules, and reactive compounds. By selecting and separating active microbes via fluorescence-activated cell sorting, PRobe INcorporation for Targeted sequencing (PRINT-seq) has inspired innovative approaches to identify and characterize functional members of our microbiota. Here, we provide a broad overview of this evolving technology and summarize how this method has been recently employed as a diagnostic fingerprint for diverse microbial activities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信