Basin-scale spatio-temporal development of glacial lakes in the Hindukush-Karakoram-Himalayas

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Atul Kumar , Suraj Mal , Udo Schickhoff , A.P. Dimri
{"title":"Basin-scale spatio-temporal development of glacial lakes in the Hindukush-Karakoram-Himalayas","authors":"Atul Kumar ,&nbsp;Suraj Mal ,&nbsp;Udo Schickhoff ,&nbsp;A.P. Dimri","doi":"10.1016/j.gloplacha.2024.104656","DOIUrl":null,"url":null,"abstract":"<div><div>Glacial lakes are expanding exponentially in the cryospheric environment of the Hindukush-Karakoram-Himalayas (HKH). Rapid glacier melting due to an above mean global annual temperature increase in HKH is attributed as the main reason for the expansion of the glacial lakes. The rapid expansion of glacial lakes increases the risk of future Glacial Lake Outburst Floods (GLOFs) events in the HKH.</div><div>In the present study, glacial lake inventories for the Indus, Ganga and Brahmaputra (IGB) river basins in the HKH were generated for 1990, 2000, 2010 and 2020 using Landsat (TM &amp; OLI) at the sub-basin level to understand the spatio-temporal and regional patterns of glacial lakes dynamics, elevational evolution, and changes in the typology. We mapped 17,641 glacial lakes (area: 1082.57 ± 192.601 km<sup>2</sup>) in 1990, 18,206 (area: 1120.95 ± 198.49 km<sup>2</sup>) in 2000, 18,399 (area: 1147.12 ± 201.26 km<sup>2</sup>) in 2010, and 19,284 (area: 1191.81 ± 209.21 km<sup>2</sup>) in 2020. Between 1990 and 2020, IGB basins showed an increase of 9.31 % in total number and 10.09 % in total area of glacial lakes. In 2020, the Brahmaputra basin had the maximum total area (area: 763.59 ± 132.14 km<sup>2</sup>), followed by Indus basin (area: 217.47 ± 43.39 km<sup>2</sup>) and the Ganga basin (area: 210.74 ± 33.66 km<sup>2</sup>). However, between 1990 and 2020, glacial lakes in the Ganga basin (n: 22.08 %) had the highest growth rate, followed by the Indus basin (n: 14.73 %) and the Brahmaputra basin (n: 4.41 %). In 2020, 76.11 % of glacial lakes were end-moraine-dammed M(e) lakes, followed by other bedrock-dammed B(o) lakes (16.45 %), supraglacial lakes (2.79 %), lateral moraine-dammed M(l) lakes (2 %), cirque B(c) lakes (1.06 %), other moraine-dammed M(o) lakes (0.38 %), and other glacial (O) lakes (1.18 %). Given the rapid growth of glacial lakes in the region along with their likely flood volumes and damage potential in case of their failures, the present study will be of importance for disaster management authorities, an important input for detection of potentially hazardous glacial lakes and for development of mitigation strategies to minimize the impact of potential future GLOF events.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"245 ","pages":"Article 104656"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124003035","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial lakes are expanding exponentially in the cryospheric environment of the Hindukush-Karakoram-Himalayas (HKH). Rapid glacier melting due to an above mean global annual temperature increase in HKH is attributed as the main reason for the expansion of the glacial lakes. The rapid expansion of glacial lakes increases the risk of future Glacial Lake Outburst Floods (GLOFs) events in the HKH.
In the present study, glacial lake inventories for the Indus, Ganga and Brahmaputra (IGB) river basins in the HKH were generated for 1990, 2000, 2010 and 2020 using Landsat (TM & OLI) at the sub-basin level to understand the spatio-temporal and regional patterns of glacial lakes dynamics, elevational evolution, and changes in the typology. We mapped 17,641 glacial lakes (area: 1082.57 ± 192.601 km2) in 1990, 18,206 (area: 1120.95 ± 198.49 km2) in 2000, 18,399 (area: 1147.12 ± 201.26 km2) in 2010, and 19,284 (area: 1191.81 ± 209.21 km2) in 2020. Between 1990 and 2020, IGB basins showed an increase of 9.31 % in total number and 10.09 % in total area of glacial lakes. In 2020, the Brahmaputra basin had the maximum total area (area: 763.59 ± 132.14 km2), followed by Indus basin (area: 217.47 ± 43.39 km2) and the Ganga basin (area: 210.74 ± 33.66 km2). However, between 1990 and 2020, glacial lakes in the Ganga basin (n: 22.08 %) had the highest growth rate, followed by the Indus basin (n: 14.73 %) and the Brahmaputra basin (n: 4.41 %). In 2020, 76.11 % of glacial lakes were end-moraine-dammed M(e) lakes, followed by other bedrock-dammed B(o) lakes (16.45 %), supraglacial lakes (2.79 %), lateral moraine-dammed M(l) lakes (2 %), cirque B(c) lakes (1.06 %), other moraine-dammed M(o) lakes (0.38 %), and other glacial (O) lakes (1.18 %). Given the rapid growth of glacial lakes in the region along with their likely flood volumes and damage potential in case of their failures, the present study will be of importance for disaster management authorities, an important input for detection of potentially hazardous glacial lakes and for development of mitigation strategies to minimize the impact of potential future GLOF events.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信