2′-Hydroxycinnamaldehyde induces ROS-mediated apoptosis in cancer cells by targeting PRX1 and PRX2

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yae Jin Yoon , Yu-Jin Lee , Jiyeon Choi , Seung-Wook Chi , Sangku Lee , Kyung Chan Park , Byoung-Mog Kwon , Dong Cho Han
{"title":"2′-Hydroxycinnamaldehyde induces ROS-mediated apoptosis in cancer cells by targeting PRX1 and PRX2","authors":"Yae Jin Yoon ,&nbsp;Yu-Jin Lee ,&nbsp;Jiyeon Choi ,&nbsp;Seung-Wook Chi ,&nbsp;Sangku Lee ,&nbsp;Kyung Chan Park ,&nbsp;Byoung-Mog Kwon ,&nbsp;Dong Cho Han","doi":"10.1016/j.rechem.2024.101931","DOIUrl":null,"url":null,"abstract":"<div><div>2′-Hydroxycinnamaldehyde (HCA) is a component of the commonly used spice cinnamon, which has beneficial effects on cancer, allergies, bacterial/viral infections, and Alzheimer’s disease. Our previous study showed that HCA induced reactive oxygen species (ROS) and apoptosis in cancer cells, and pretreatment of cancer cells with antioxidants abolished HCA-mediated ROS production and apoptosis. This indicates that ROS are critical effector for HCA activity. However, the molecular target of HCA for ROS induction has not been identified. In the present study, we identified peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as target proteins of HCA using affinity chromatography, and further confirmed these association using a cellular thermal shift assay (CETSA). In addition, we used mutagenesis to identify important cysteine residues in PRX1 for HCA binding. PRX1 has four cysteines (Cys52, Cys71, Cys83, and Cys173), and when Cys173 (but not the other cysteine sites) was mutated to serine, it was unable to bind biotin-conjugated HCA, suggesting that Cys173 is important for HCA binding. Treatment of SW620 cancer cells transfected by control vector with 20 μM HCA increased ROS levels by 5.2-fold compared to DMSO-treated cells. However, downregulation of target proteins PRX1 and PRX2 using shRNAs (short hairpin RNA) significantly reduced HCA-mediated ROS induction (1.6-fold), supporting that PRX1 and PRX2 are targets of HCA for ROS elevation. Additionally, intraperitoneal injection of 50 mg/kg HCA inhibited SW620 tumor growth, resulting in a 59.9 % reduction in tumor volume. CETSA analysis of tumor tissues showed that PRX1 and PRX2 were bound and thus inactivated by HCA in a mouse xenograft model. These findings demonstrate that PRX1 and PRX2 are molecular target proteins responsible for HCA-induced ROS elevation and cancer cell death.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 101931"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624006271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2′-Hydroxycinnamaldehyde (HCA) is a component of the commonly used spice cinnamon, which has beneficial effects on cancer, allergies, bacterial/viral infections, and Alzheimer’s disease. Our previous study showed that HCA induced reactive oxygen species (ROS) and apoptosis in cancer cells, and pretreatment of cancer cells with antioxidants abolished HCA-mediated ROS production and apoptosis. This indicates that ROS are critical effector for HCA activity. However, the molecular target of HCA for ROS induction has not been identified. In the present study, we identified peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as target proteins of HCA using affinity chromatography, and further confirmed these association using a cellular thermal shift assay (CETSA). In addition, we used mutagenesis to identify important cysteine residues in PRX1 for HCA binding. PRX1 has four cysteines (Cys52, Cys71, Cys83, and Cys173), and when Cys173 (but not the other cysteine sites) was mutated to serine, it was unable to bind biotin-conjugated HCA, suggesting that Cys173 is important for HCA binding. Treatment of SW620 cancer cells transfected by control vector with 20 μM HCA increased ROS levels by 5.2-fold compared to DMSO-treated cells. However, downregulation of target proteins PRX1 and PRX2 using shRNAs (short hairpin RNA) significantly reduced HCA-mediated ROS induction (1.6-fold), supporting that PRX1 and PRX2 are targets of HCA for ROS elevation. Additionally, intraperitoneal injection of 50 mg/kg HCA inhibited SW620 tumor growth, resulting in a 59.9 % reduction in tumor volume. CETSA analysis of tumor tissues showed that PRX1 and PRX2 were bound and thus inactivated by HCA in a mouse xenograft model. These findings demonstrate that PRX1 and PRX2 are molecular target proteins responsible for HCA-induced ROS elevation and cancer cell death.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信