Three-dimensional computational fluid dynamics (3D-CFD) simulation of hydrogen transport to investigate the effect of output voltage and inlet anode velocity on proton exchange membrane fuel cell performances

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abdelaziz Samris , Hamid Mounir
{"title":"Three-dimensional computational fluid dynamics (3D-CFD) simulation of hydrogen transport to investigate the effect of output voltage and inlet anode velocity on proton exchange membrane fuel cell performances","authors":"Abdelaziz Samris ,&nbsp;Hamid Mounir","doi":"10.1016/j.rechem.2024.101929","DOIUrl":null,"url":null,"abstract":"<div><div>A proton exchange membrane fuel cell (PEMFC) stands out as a highly efficient device for hydrogen utilization. This study presents a three-dimensional simulation that integrates computational fluid dynamics (CFD) to accurately and swiftly predict the PEM fuel cell performance. Initially, the proposed model undergoes validation using existing literature data. Subsequently, it is deployed to simulate the distribution and evolution of various parameters including current density, hydrogen and oxygen mass fractions, pressure and temperature in the PEM fuel cell. The findings reveal that the optimization of current density can be obtained by increasing the consumption rates of hydrogen and oxygen. In the scenarios investigated, a decrease in output voltage from 0.6 V to 0.46 V leads to a notable increase in current density from <span><math><mrow><mn>0.8447</mn><mi>A</mi><mo>/</mo><msup><mrow><mi>C</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> to <span><math><mrow><mn>0.9944</mn><mi>A</mi><mo>/</mo><msup><mrow><mi>C</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. The results, also, show that the maximum power density in this study reaches <span><math><mrow><mn>0.596</mn><mi>W</mi><mo>/</mo><msup><mrow><mi>C</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> when inlet velocity of anode channel is fixed at <span><math><mrow><mn>0.5</mn><mi>m</mi><mo>/</mo><mi>s</mi></mrow></math></span>. On the other hand, when we increase the inlet velocity to <span><math><mrow><mn>0.5</mn><mi>m</mi><mo>/</mo><mi>s</mi></mrow></math></span>, the reduced residence time and potential diffusion limitations can lower the mass fraction of hydrogen participating in the electrochemical reaction.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 101929"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624006258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A proton exchange membrane fuel cell (PEMFC) stands out as a highly efficient device for hydrogen utilization. This study presents a three-dimensional simulation that integrates computational fluid dynamics (CFD) to accurately and swiftly predict the PEM fuel cell performance. Initially, the proposed model undergoes validation using existing literature data. Subsequently, it is deployed to simulate the distribution and evolution of various parameters including current density, hydrogen and oxygen mass fractions, pressure and temperature in the PEM fuel cell. The findings reveal that the optimization of current density can be obtained by increasing the consumption rates of hydrogen and oxygen. In the scenarios investigated, a decrease in output voltage from 0.6 V to 0.46 V leads to a notable increase in current density from 0.8447A/Cm2 to 0.9944A/Cm2. The results, also, show that the maximum power density in this study reaches 0.596W/Cm2 when inlet velocity of anode channel is fixed at 0.5m/s. On the other hand, when we increase the inlet velocity to 0.5m/s, the reduced residence time and potential diffusion limitations can lower the mass fraction of hydrogen participating in the electrochemical reaction.

Abstract Image

三维计算流体动力学(3D-CFD)模拟氢输运,研究输出电压和进口阳极速度对质子交换膜燃料电池性能的影响
质子交换膜燃料电池(PEMFC)是一种高效的氢利用装置。本研究提出了一种集成计算流体动力学(CFD)的三维模拟方法,以准确、快速地预测PEM燃料电池的性能。首先,使用现有文献数据对所提出的模型进行验证。随后,它被用于模拟PEM燃料电池中各种参数的分布和演变,包括电流密度、氢和氧质量分数、压力和温度。研究结果表明,通过提高氢和氧的消耗率可以优化电流密度。在所研究的场景中,输出电压从0.6 V降低到0.46 V导致电流密度从0.8447A/Cm2显著增加到0.9944A/Cm2。当阳极通道入口速度固定为0.5m/s时,本研究的最大功率密度达到0.596W/Cm2。另一方面,当入口速度增加到0.5m/s时,减少停留时间和潜在扩散限制可以降低参与电化学反应的氢的质量分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信