Numeric ring-reconstructions based on massifs favor a non-oblique south pole-Aitken-forming impact event

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Hannes Bernhardt , Jessica M. Walsh , Leon M. Schröder , Jaclyn D. Clark , Megan R. Henriksen , Christopher S. Edwards
{"title":"Numeric ring-reconstructions based on massifs favor a non-oblique south pole-Aitken-forming impact event","authors":"Hannes Bernhardt ,&nbsp;Jessica M. Walsh ,&nbsp;Leon M. Schröder ,&nbsp;Jaclyn D. Clark ,&nbsp;Megan R. Henriksen ,&nbsp;Christopher S. Edwards","doi":"10.1016/j.epsl.2024.119123","DOIUrl":null,"url":null,"abstract":"<div><div>The size and shape of ring structures around the South Pole-Aitken basin (SPA) have been subject of several studies over the past decades. Most investigations considered long wavelength signatures such as the topographic outline of the extant basin floor or orbital observations of elemental abundances, all of which are oval or crescent-shaped and therefore implied an elliptic SPA formed by an oblique impact. Here we present a novel dataset of 286 circum-SPA massifs taller than 1000 m prominence, 201 of which we interpret as likely ring remnants based on morphology and location. Using a gradient-based optimization algorithm, we performed three numeric fits of these massifs, each consisting of an outer and an inner ellipse. While one fit included all 201 likely ring remnants, the two other fits included only massifs taller than 2160 m prominence or such that show a negative Bouguer anomaly (like the Outer Rook Ring around Orientale basin). A set of massifs that are part of non-ambiguous, relatively intact SPA-ring segments were given the same weight as all other massifs in every fit. The sizes of our three fits are relatively similar (variances ≤ 3.7%) with semimajor and semiminor axes of the outer ellipses ranging from 1099.4 km to 1126.9 km and 1060.0 km to 1099.4, respectively, and those for the inner ellipses from 946.2 km to 947.4 km and 910.2 to 941.3 km, respectively. As the two more exclusive fits discard massifs that are part of the relatively intact ring segments, we tentatively favor our more inclusive fit using all 201 likely ring remnants, which also has the lowest loss per datapoint value. All our fits have ellipticities ≤ 1.06 resulting in a near-circular SPA, which should have required an impact at a non-oblique angle of well over 44°. Compared to previously assumed lower impact angles around 30° to 45°, 2D and 3D models by previous studies suggest that such a non-oblique SPA-forming impact would increase the volume of generated impact melt, excavation depth, and diameter of the transient cavity, albeit only moderately by up to 20%. The energy injected by the SPA-forming event might be smaller in a non-oblique case because the size of the basin is determined only by the vertical component of the impactor trajectory, allowing for a lower impact energy to explain the diameter of SPA. Most decisively, though, a non-oblique scenario would imply a more symmetric distribution of ejecta, predicting an up to 10 km thick blanket at the South Pole, where oblique scenarios estimated only very small amounts of SPA ejecta. This is in agreement with increased olivine abundances in the regolith at the Chandrayaan 3 landing site and would imply SPA ejecta, including materials from the lower crust and upper mantle, to be relatively widespread in the Artemis Exploration Zone.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"650 ","pages":"Article 119123"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005557","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The size and shape of ring structures around the South Pole-Aitken basin (SPA) have been subject of several studies over the past decades. Most investigations considered long wavelength signatures such as the topographic outline of the extant basin floor or orbital observations of elemental abundances, all of which are oval or crescent-shaped and therefore implied an elliptic SPA formed by an oblique impact. Here we present a novel dataset of 286 circum-SPA massifs taller than 1000 m prominence, 201 of which we interpret as likely ring remnants based on morphology and location. Using a gradient-based optimization algorithm, we performed three numeric fits of these massifs, each consisting of an outer and an inner ellipse. While one fit included all 201 likely ring remnants, the two other fits included only massifs taller than 2160 m prominence or such that show a negative Bouguer anomaly (like the Outer Rook Ring around Orientale basin). A set of massifs that are part of non-ambiguous, relatively intact SPA-ring segments were given the same weight as all other massifs in every fit. The sizes of our three fits are relatively similar (variances ≤ 3.7%) with semimajor and semiminor axes of the outer ellipses ranging from 1099.4 km to 1126.9 km and 1060.0 km to 1099.4, respectively, and those for the inner ellipses from 946.2 km to 947.4 km and 910.2 to 941.3 km, respectively. As the two more exclusive fits discard massifs that are part of the relatively intact ring segments, we tentatively favor our more inclusive fit using all 201 likely ring remnants, which also has the lowest loss per datapoint value. All our fits have ellipticities ≤ 1.06 resulting in a near-circular SPA, which should have required an impact at a non-oblique angle of well over 44°. Compared to previously assumed lower impact angles around 30° to 45°, 2D and 3D models by previous studies suggest that such a non-oblique SPA-forming impact would increase the volume of generated impact melt, excavation depth, and diameter of the transient cavity, albeit only moderately by up to 20%. The energy injected by the SPA-forming event might be smaller in a non-oblique case because the size of the basin is determined only by the vertical component of the impactor trajectory, allowing for a lower impact energy to explain the diameter of SPA. Most decisively, though, a non-oblique scenario would imply a more symmetric distribution of ejecta, predicting an up to 10 km thick blanket at the South Pole, where oblique scenarios estimated only very small amounts of SPA ejecta. This is in agreement with increased olivine abundances in the regolith at the Chandrayaan 3 landing site and would imply SPA ejecta, including materials from the lower crust and upper mantle, to be relatively widespread in the Artemis Exploration Zone.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信