Novel isocyanobenzene carbazole-based thermally activated delayed fluorophors towards solution-processed blue emitting OLED devices with high efficiency

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Xiao , Tianyu Huang , Guimin Zhao , Wei Jiang , Dongdong Zhang , Lian Duan
{"title":"Novel isocyanobenzene carbazole-based thermally activated delayed fluorophors towards solution-processed blue emitting OLED devices with high efficiency","authors":"Yang Xiao ,&nbsp;Tianyu Huang ,&nbsp;Guimin Zhao ,&nbsp;Wei Jiang ,&nbsp;Dongdong Zhang ,&nbsp;Lian Duan","doi":"10.1016/j.orgel.2024.107155","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving efficient blue emission is an exigent challenge for the application of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Carbazole benzonitrile-based TADF molecules exhibit promising performance in achieving the goal. Here, by replacing the cyano group in the sensitizer with the isocyano group, a 9 nm hypochromatic shift in photoluminescence spectra of the sensitizer and an enhanced efficiency of the Förster energy transfer (FET) in TADF-sensitized fluorescence (TSF) is found. By using the isocyano-based compounds as sensitizers, a maximum external quantum efficiency of 24.5 % is obtained in solution-processed OLEDs, surpassing the cyano-based counterparts with similar structures. Moreover, the full width at half maximum (FWHM) of the emitter in the electroluminescence spectrum is also decreased from 47 nm to 38 nm, indicating a more complete energy transfer.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"137 ","pages":"Article 107155"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001666","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving efficient blue emission is an exigent challenge for the application of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Carbazole benzonitrile-based TADF molecules exhibit promising performance in achieving the goal. Here, by replacing the cyano group in the sensitizer with the isocyano group, a 9 nm hypochromatic shift in photoluminescence spectra of the sensitizer and an enhanced efficiency of the Förster energy transfer (FET) in TADF-sensitized fluorescence (TSF) is found. By using the isocyano-based compounds as sensitizers, a maximum external quantum efficiency of 24.5 % is obtained in solution-processed OLEDs, surpassing the cyano-based counterparts with similar structures. Moreover, the full width at half maximum (FWHM) of the emitter in the electroluminescence spectrum is also decreased from 47 nm to 38 nm, indicating a more complete energy transfer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信