Shuangjiang Du , Lihua Shi , Shi Qiu, Yantao Duan, Yun Li, Zheng Sun
{"title":"Broadband VHF lightning radiation sources localization by ESPRIT algorithm","authors":"Shuangjiang Du , Lihua Shi , Shi Qiu, Yantao Duan, Yun Li, Zheng Sun","doi":"10.1016/j.atmosres.2024.107812","DOIUrl":null,"url":null,"abstract":"<div><div>Fast and fine radiation source localization algorithm is of vital importance to lightning warning and protection. Current high-accuracy localization techniques, such as the time reversal technique (TR) and the multiple signal classification (MUSIC), are based on traversal search mechanism, which takes a long time. In this paper, the estimation of signal parameters via rotational invariance technique (ESPRIT) is applied to lightning radiation source localization, and the direction of arrival (DOA) can be directly solved through the covariance matrix, so it is very efficient. For the broadband VHF signal, the incoherent signal method (ISM) is combined with ESPRIT. Two classical structures of uniform <span><math><mi>L</mi></math></span>-shaped array and uniform circular array are studied and applied to ESPRIT algorithm. As for the uniform circular array, the fourth order cumulant matrix is constructed to find the translation invariant subarrays. To unwrap the phase ambiguity caused by the calculated phase angle of ESPRIT algorithm, the total least difference of slope (TLDS) principle is proposed. The proposed ESPRIT algorithm is more than 1400 times faster than MUSIC while its localization accuracy is still pretty high, which is able to detect the radiation source under -8 dB signal to noise ratio (SNR) according to the result of numerical simulations, and can map continuous and fine lightning development channel in the experiments on the measured lightning data.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107812"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005945","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fast and fine radiation source localization algorithm is of vital importance to lightning warning and protection. Current high-accuracy localization techniques, such as the time reversal technique (TR) and the multiple signal classification (MUSIC), are based on traversal search mechanism, which takes a long time. In this paper, the estimation of signal parameters via rotational invariance technique (ESPRIT) is applied to lightning radiation source localization, and the direction of arrival (DOA) can be directly solved through the covariance matrix, so it is very efficient. For the broadband VHF signal, the incoherent signal method (ISM) is combined with ESPRIT. Two classical structures of uniform -shaped array and uniform circular array are studied and applied to ESPRIT algorithm. As for the uniform circular array, the fourth order cumulant matrix is constructed to find the translation invariant subarrays. To unwrap the phase ambiguity caused by the calculated phase angle of ESPRIT algorithm, the total least difference of slope (TLDS) principle is proposed. The proposed ESPRIT algorithm is more than 1400 times faster than MUSIC while its localization accuracy is still pretty high, which is able to detect the radiation source under -8 dB signal to noise ratio (SNR) according to the result of numerical simulations, and can map continuous and fine lightning development channel in the experiments on the measured lightning data.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.