Production of cannabidiol nanoparticles loaded in polyvinylpyrrolidone microparticles by supercritical CO2 assisted atomization and dissolution enhancement effect
Lucia Baldino, Sonia Sarnelli, Ida Palazzo, Mariarosa Scognamiglio, Ernesto Reverchon
{"title":"Production of cannabidiol nanoparticles loaded in polyvinylpyrrolidone microparticles by supercritical CO2 assisted atomization and dissolution enhancement effect","authors":"Lucia Baldino, Sonia Sarnelli, Ida Palazzo, Mariarosa Scognamiglio, Ernesto Reverchon","doi":"10.1016/j.apt.2024.104749","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, cannabidiol (CBD) nanoparticles contained in polyvinylpyrrolidone (PVP) microparticles (nano-in-micro system) were produced by supercritical CO<sub>2</sub> assisted atomization (SAA) with the aim of improving CBD bioavailability. The experiments were performed by changing the total concentration of solute PVP + CBD and CBD/PVP mass ratio (R) to understand the effect of these parameters on CBD nanoparticle mean size, measured by a dynamic light scattering operating in a periodic manner. Nanoparticles as small as 33 nm were obtained, protected in PVP microparticles. CBD release tests were carried out to verify the increase in the solubilization rate of CBD nanoparticles: pure CBD powder was completely dissolved in about 240 min; whereas CBD 55 nm nanoparticles were completely released in 20 min.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 1","pages":"Article 104749"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124004266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, cannabidiol (CBD) nanoparticles contained in polyvinylpyrrolidone (PVP) microparticles (nano-in-micro system) were produced by supercritical CO2 assisted atomization (SAA) with the aim of improving CBD bioavailability. The experiments were performed by changing the total concentration of solute PVP + CBD and CBD/PVP mass ratio (R) to understand the effect of these parameters on CBD nanoparticle mean size, measured by a dynamic light scattering operating in a periodic manner. Nanoparticles as small as 33 nm were obtained, protected in PVP microparticles. CBD release tests were carried out to verify the increase in the solubilization rate of CBD nanoparticles: pure CBD powder was completely dissolved in about 240 min; whereas CBD 55 nm nanoparticles were completely released in 20 min.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)