Yajun Zhao , Yuan Ping , Guiyin Mi , Zhiyuan Xiao , Fujun Liu , Chongfa Cai , Zhonglu Guo
{"title":"Extreme summer drought increased soil detachment capacity of biocrusts in subtropical China","authors":"Yajun Zhao , Yuan Ping , Guiyin Mi , Zhiyuan Xiao , Fujun Liu , Chongfa Cai , Zhonglu Guo","doi":"10.1016/j.still.2024.106372","DOIUrl":null,"url":null,"abstract":"<div><div>Biological soil crusts (Biocrusts) are considered to have significant effects on soil detachment processes. Increasing extreme droughts are expected to affect the structure and functioning of biocrust ecosystems. However, understanding how biocrust ecosystems will respond to drought requires further investigation in the subtropical region. This study conducted continuously monitoring of understory biocrusts in subtropical China from May to November 2022, analyzed the monthly variation of near-surface characteristics of biocrusts and performed scouring experiments with six flow shear stresses (7.61–21.08 Pa) to assess the monthly variation of soil detachment capacity (<em>Dc</em>) of biocrusts. Finally, we elucidated the complex effects of summer drought (August-September) on <em>Dc</em> of biocrusts. Results showed that summer drought led to significant reductions in biocrust coverage (BC) and biocrust thickness (BT) (<em>P</em><0.05), as well as notable declines in soil stability (including soil cohesion and Mean weight diameter) and soil nutrient content (including soil organic matter, total Nitrogen, total Phosphorus) (<em>P</em><0.05), except for a non-significant increase in bulk density (<em>P</em>>0.05). Furthermore, <em>Dc</em> of biocrusts significantly increased by 172.2 % during the summer drought compared to the previous months (<em>P</em><0.05). These changes of biocrusts are mainly affected by moisture stress more than heat stress. Partial least squares path modeling (PLS-PM) revealed that reduced rain and lower soil moisture increased <em>Dc</em> mainly by diminishing the BC and BT, followed by reducing soil cohesion and soil aggregate stability. The results provide empirical evidence for the cumulatively detrimental effects of future climate on biocrusts and contribute to more comprehensive understanding of biocrusts multifunctionality.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106372"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003738","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Biological soil crusts (Biocrusts) are considered to have significant effects on soil detachment processes. Increasing extreme droughts are expected to affect the structure and functioning of biocrust ecosystems. However, understanding how biocrust ecosystems will respond to drought requires further investigation in the subtropical region. This study conducted continuously monitoring of understory biocrusts in subtropical China from May to November 2022, analyzed the monthly variation of near-surface characteristics of biocrusts and performed scouring experiments with six flow shear stresses (7.61–21.08 Pa) to assess the monthly variation of soil detachment capacity (Dc) of biocrusts. Finally, we elucidated the complex effects of summer drought (August-September) on Dc of biocrusts. Results showed that summer drought led to significant reductions in biocrust coverage (BC) and biocrust thickness (BT) (P<0.05), as well as notable declines in soil stability (including soil cohesion and Mean weight diameter) and soil nutrient content (including soil organic matter, total Nitrogen, total Phosphorus) (P<0.05), except for a non-significant increase in bulk density (P>0.05). Furthermore, Dc of biocrusts significantly increased by 172.2 % during the summer drought compared to the previous months (P<0.05). These changes of biocrusts are mainly affected by moisture stress more than heat stress. Partial least squares path modeling (PLS-PM) revealed that reduced rain and lower soil moisture increased Dc mainly by diminishing the BC and BT, followed by reducing soil cohesion and soil aggregate stability. The results provide empirical evidence for the cumulatively detrimental effects of future climate on biocrusts and contribute to more comprehensive understanding of biocrusts multifunctionality.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.