Sheikh Irfan , Malik Aalim , Moayad Husein Flaifel , Irfan Nazir , M.A. Shah , Muzaffer Qadir Lone , Arfat Firdous , Altaf Hussain Pandith , G.N. Dar
{"title":"Enhanced electrochemical performance of MoS2@CdS@GO ternary heterostructures for asymmetric supercapacitors","authors":"Sheikh Irfan , Malik Aalim , Moayad Husein Flaifel , Irfan Nazir , M.A. Shah , Muzaffer Qadir Lone , Arfat Firdous , Altaf Hussain Pandith , G.N. Dar","doi":"10.1016/j.est.2024.114788","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene oxide (GO) combined with transition metal sulfides has been identified as a promising approach for energy storage, offering improved properties over pure transition metal sulfides. In this work, a ternary heterostructure of MoS₂, CdS, and GO (MoS₂@CdS@GO) was synthesized via a hydrothermal method. The structure was characterized using XRD, XPS, EDAX, Raman spectroscopy, UV–visible spectroscopy, and TEM. TEM images revealed that CdS nanoparticles are surrounded by MoS₂ and GO sheets. UV analysis confirmed that adding MoS₂@CdS to GO reduced the band gap of the composite. Electrochemical testing of GO, CdS, MoS₂, MoS₂@GO, MoS₂@CdS, and MoS₂@CdS@GO showed that the MoS₂@CdS@GO composite achieved an impressive specific capacitance of 1262 F/g at a scan rate of 6 mV/s and retained 91 % of its capacitance after 5000 cycles. This was attributed to the enhanced performance of MoS₂@GO in combination with CdS, which provides greater ion buffering and better charge storage. In practical terms, an asymmetric supercapacitor (ASC) utilizing MoS₂@CdS@GO showed 86.9 % capacitance retention after 5000 cycles and reached an energy density of 40.69 Wh/kg at a power density of 586.68 W/kg, highlighting its potential for energy storage devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114788"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043743","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene oxide (GO) combined with transition metal sulfides has been identified as a promising approach for energy storage, offering improved properties over pure transition metal sulfides. In this work, a ternary heterostructure of MoS₂, CdS, and GO (MoS₂@CdS@GO) was synthesized via a hydrothermal method. The structure was characterized using XRD, XPS, EDAX, Raman spectroscopy, UV–visible spectroscopy, and TEM. TEM images revealed that CdS nanoparticles are surrounded by MoS₂ and GO sheets. UV analysis confirmed that adding MoS₂@CdS to GO reduced the band gap of the composite. Electrochemical testing of GO, CdS, MoS₂, MoS₂@GO, MoS₂@CdS, and MoS₂@CdS@GO showed that the MoS₂@CdS@GO composite achieved an impressive specific capacitance of 1262 F/g at a scan rate of 6 mV/s and retained 91 % of its capacitance after 5000 cycles. This was attributed to the enhanced performance of MoS₂@GO in combination with CdS, which provides greater ion buffering and better charge storage. In practical terms, an asymmetric supercapacitor (ASC) utilizing MoS₂@CdS@GO showed 86.9 % capacitance retention after 5000 cycles and reached an energy density of 40.69 Wh/kg at a power density of 586.68 W/kg, highlighting its potential for energy storage devices.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.