Tracking autonomic nervous system activity using surface ECG: Personalized, multiparametric evaluation

IF 1.3 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Vladimir Shusterman , Cees A. Swenne , Stacy Hoffman , Patrick J. Strollo , Barry London
{"title":"Tracking autonomic nervous system activity using surface ECG: Personalized, multiparametric evaluation","authors":"Vladimir Shusterman ,&nbsp;Cees A. Swenne ,&nbsp;Stacy Hoffman ,&nbsp;Patrick J. Strollo ,&nbsp;Barry London","doi":"10.1016/j.jelectrocard.2024.153837","DOIUrl":null,"url":null,"abstract":"<div><div>We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.</div></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"88 ","pages":"Article 153837"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624003078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of electrocardiology
Journal of electrocardiology 医学-心血管系统
CiteScore
2.70
自引率
7.70%
发文量
152
审稿时长
38 days
期刊介绍: The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信