Hoai Van T. Nguyen , Hee Jin Han , Euna Choi , Yong Ho Lee , Kyung-Koo Lee
{"title":"Implementation of phosphonium salt for high-performance supercapacitors from room to ultra-low temperature conditions","authors":"Hoai Van T. Nguyen , Hee Jin Han , Euna Choi , Yong Ho Lee , Kyung-Koo Lee","doi":"10.1016/j.est.2024.114750","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional supercapacitors encounter limitations in operating voltage and performance at low temperatures due to poor ionic conductivity and diminished interfacial dynamics in electrolytes. In this study, we synthesized the phosphonium salt 5-phosphinaspiro[4.4] nonane tetrafluoroborate (PSNBF<sub>4</sub>) for the first time. We extensively characterized the physical and electrochemical properties of PSNBF<sub>4</sub> in acetonitrile (AN) and propionitrile (PN) as electrolytes, assessing their performance in supercapacitors at room temperature and − 40 °C. The results demonstrate PSNBF<sub>4</sub> electrolytes exhibit high solubility, outstanding ionic conductivity (1 M PSNBF<sub>4</sub>/AN: 49.8 mS cm<sup>−1</sup>; 1 M PSNBF<sub>4</sub>/PN: 27.5 mS cm<sup>−1</sup>), and high electrochemical stability, contributing to good capacitance retention after 500 h of floating tests at 25 °C. Supercapacitors using PSNBF<sub>4</sub>/AN retained 78 % of their capacitance at 3.1 V, whereas those with PSNBF<sub>4</sub>/PN maintained 68 % at 3.2 V. Impressively, these supercapacitors performed exceptionally well at −40 °C, displaying excellent cycle stability and high capacitance retention at elevated voltages. Supercapacitors with PSNBF<sub>4</sub>/AN retain 96.6 % of their capacitance at 3.2 V, while PSNBF<sub>4</sub>/PN retained 93.4 % of their capacitance at 3.4 V after floating for 500 h. These results demonstrate PSNBF<sub>4</sub>-based supercapacitors can operate effectively at high voltages in both room and extremely low temperatures, addressing a significant challenge in commercial supercapacitor applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114750"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043366","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional supercapacitors encounter limitations in operating voltage and performance at low temperatures due to poor ionic conductivity and diminished interfacial dynamics in electrolytes. In this study, we synthesized the phosphonium salt 5-phosphinaspiro[4.4] nonane tetrafluoroborate (PSNBF4) for the first time. We extensively characterized the physical and electrochemical properties of PSNBF4 in acetonitrile (AN) and propionitrile (PN) as electrolytes, assessing their performance in supercapacitors at room temperature and − 40 °C. The results demonstrate PSNBF4 electrolytes exhibit high solubility, outstanding ionic conductivity (1 M PSNBF4/AN: 49.8 mS cm−1; 1 M PSNBF4/PN: 27.5 mS cm−1), and high electrochemical stability, contributing to good capacitance retention after 500 h of floating tests at 25 °C. Supercapacitors using PSNBF4/AN retained 78 % of their capacitance at 3.1 V, whereas those with PSNBF4/PN maintained 68 % at 3.2 V. Impressively, these supercapacitors performed exceptionally well at −40 °C, displaying excellent cycle stability and high capacitance retention at elevated voltages. Supercapacitors with PSNBF4/AN retain 96.6 % of their capacitance at 3.2 V, while PSNBF4/PN retained 93.4 % of their capacitance at 3.4 V after floating for 500 h. These results demonstrate PSNBF4-based supercapacitors can operate effectively at high voltages in both room and extremely low temperatures, addressing a significant challenge in commercial supercapacitor applications.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.