Hydrogen bond cross-linked photo-healable multifunctional phase change materials for thermal management

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Fang Wei , Yongpeng Wu , Mingjie Li , Danfeng Pei , Chaoxu Li
{"title":"Hydrogen bond cross-linked photo-healable multifunctional phase change materials for thermal management","authors":"Fang Wei ,&nbsp;Yongpeng Wu ,&nbsp;Mingjie Li ,&nbsp;Danfeng Pei ,&nbsp;Chaoxu Li","doi":"10.1016/j.est.2024.114821","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change materials (PCMs) are extensively employed in the realm of electronic device thermal management due to their remarkable ability to absorb heat while maintaining temperature stability. However, the lack of versatility has greatly hindered their applications in flexible wearable electronics and similar fields. Herein, we designed a dynamic, flexible, anti-flaming, ultrafast healable and recyclable supramolecular poly(urethane-urea) phase change material (PUSePCM). The synergistic effects of dynamic hydrogen-bond network and rapid diselenide metathesis endowed a rapid self-healing within 30 s and recycle capability. The PUSePCM could also attach to various metal surfaces and was further used as flexible interface materials in thermal management applications. With the silver microparticles content of ≥30 vol%, the resultant composite can significantly reduce the work temperature of a chip by about 10 °C. This research not only provides a new approach for creating phase-change materials with dynamic, flexible, self-healing, and recyclable performance, but also offers the applications for damage tolerable thermal management interface.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114821"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24044074","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change materials (PCMs) are extensively employed in the realm of electronic device thermal management due to their remarkable ability to absorb heat while maintaining temperature stability. However, the lack of versatility has greatly hindered their applications in flexible wearable electronics and similar fields. Herein, we designed a dynamic, flexible, anti-flaming, ultrafast healable and recyclable supramolecular poly(urethane-urea) phase change material (PUSePCM). The synergistic effects of dynamic hydrogen-bond network and rapid diselenide metathesis endowed a rapid self-healing within 30 s and recycle capability. The PUSePCM could also attach to various metal surfaces and was further used as flexible interface materials in thermal management applications. With the silver microparticles content of ≥30 vol%, the resultant composite can significantly reduce the work temperature of a chip by about 10 °C. This research not only provides a new approach for creating phase-change materials with dynamic, flexible, self-healing, and recyclable performance, but also offers the applications for damage tolerable thermal management interface.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信