Exploring the effect of magnesium oxide on electrochemical properties of polypyrrole encapsulated on graphitic carbon nitride for supercapacitors applications
{"title":"Exploring the effect of magnesium oxide on electrochemical properties of polypyrrole encapsulated on graphitic carbon nitride for supercapacitors applications","authors":"Manisha , Monika Dhanda , Varij Panwar , Suman Lata , Harish Kumar , Anshu Sharma","doi":"10.1016/j.est.2024.114698","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the facile synthesis of magnesium oxide/graphitic carbon nitride/Polpyrrole (MGP) composites by varying the concentration of magnesium oxide. These composites were synthesized via calcination route followed by in-situ polymerization reaction thus naming the composites as MGP0.5, MGP1, MGP2 and MGP3. The structural analysis of composites is done through X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy while the morphology is analyzed through Field Emission Scanning Electron Microscopy (FESEM) and supported by Transmission Electron Microscopy (TEM). The MGP2 composite, assessed through multi-point BET theory, exhibits a specific surface area of 109.45 m<sup>2</sup> g<sup>−1</sup>, surpassing that of its precursor materials. This enhanced surface area facilitates a greater number of active sites for the adsorption-desorption of ions. The assessment of electrochemical properties is done through cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) in three-electrode setup in 1 M H<sub>2</sub>SO<sub>4</sub> which delivers a specific capacitance of 1132.12 F g<sup>−1</sup> at 5 mV s<sup>−1</sup> for MGP2 composite. The practical applicability of the electrode material was examined by fabricating an asymmetric supercapacitor device which delivers an energy density of 9.25 W h kg<sup>−1</sup> at a power density of 302.72 W kg<sup>−1</sup>. The supercapacitor device exhibited 94.03 % capacitance retention after 10,000 cycles demonstrating its potential to be used as a future supercapacitor applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114698"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24042841","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the facile synthesis of magnesium oxide/graphitic carbon nitride/Polpyrrole (MGP) composites by varying the concentration of magnesium oxide. These composites were synthesized via calcination route followed by in-situ polymerization reaction thus naming the composites as MGP0.5, MGP1, MGP2 and MGP3. The structural analysis of composites is done through X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy while the morphology is analyzed through Field Emission Scanning Electron Microscopy (FESEM) and supported by Transmission Electron Microscopy (TEM). The MGP2 composite, assessed through multi-point BET theory, exhibits a specific surface area of 109.45 m2 g−1, surpassing that of its precursor materials. This enhanced surface area facilitates a greater number of active sites for the adsorption-desorption of ions. The assessment of electrochemical properties is done through cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) in three-electrode setup in 1 M H2SO4 which delivers a specific capacitance of 1132.12 F g−1 at 5 mV s−1 for MGP2 composite. The practical applicability of the electrode material was examined by fabricating an asymmetric supercapacitor device which delivers an energy density of 9.25 W h kg−1 at a power density of 302.72 W kg−1. The supercapacitor device exhibited 94.03 % capacitance retention after 10,000 cycles demonstrating its potential to be used as a future supercapacitor applications.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.