Quan Tang , Wei Li , Jing Wang , Feiyi Zhang , Wenxia Dai , Zhenwang Li , Shengsen Wang , Weiqin Yin , Yi Cheng , Xiaozhi Wang
{"title":"Coupled iron oxides and microbial-mediated soil organic carbon stabilization across tea plantation chronosequences","authors":"Quan Tang , Wei Li , Jing Wang , Feiyi Zhang , Wenxia Dai , Zhenwang Li , Shengsen Wang , Weiqin Yin , Yi Cheng , Xiaozhi Wang","doi":"10.1016/j.still.2024.106382","DOIUrl":null,"url":null,"abstract":"<div><div>Soil acidification due to long-term tea plantations is a pervasive problem that may affect soil organic carbon (SOC) preservation by altering organo-mineral interactions. Nevertheless, how iron (Fe) minerals and microbes regulate SOC stabilization with increasing years of tea plantation establishment remains unclear. By analyzing the dynamic changes of SOC, Fe fractions and Fe oxide-bound OC (Fe–OC) pools, and associations with microbial communities over tea plantation establishment time-series (1, 7, 16, 25, and 42 years), this study explored the roles of coupled Fe oxides and microbial communities in regulating SOC accumulation and stabilization. The SOC levels significantly increased with years of tea plantation, accompanied by increases in the proportions of macroaggregates, poorly crystalline Fe oxides and organically complexed Fe, but soil pH decreased sharply. The increased soil Fe–OC pool and molar C:Fe ratios were positive correlated with SOC and macroaggregates, indicating that SOC was preserved by physic-chemical protection. Furthermore, these changes induced decreases in microbial biomass C and bacterial diversity with years of tea plantation. The relative abundance of A-strategists (i.e., <em>Acidobacteria, Actinobacteria, Chloroflexi</em>) increased concurrently, with an opposite trend for Y-strategists, suggesting tea plantation-induced environmental changes shifted the Y-strategists towards the predominance of A-strategists. Collectively, these findings provide new insights into the role of Fe oxides and microbial life history traits in SOC accumulation and stabilization in the progression of tea plantation establishment, including (i) physic-chemical protection of SOC through formation of Fe–OC by complexation; and (ii) regulation of the microbial community diversity and composition, especially bacterial life strategies. These results are of great implications for better predicting and accurately controlling the response of OC pools in tea plantations to future changes and disturbances and for maintaining regional C balance.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106382"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003830","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Soil acidification due to long-term tea plantations is a pervasive problem that may affect soil organic carbon (SOC) preservation by altering organo-mineral interactions. Nevertheless, how iron (Fe) minerals and microbes regulate SOC stabilization with increasing years of tea plantation establishment remains unclear. By analyzing the dynamic changes of SOC, Fe fractions and Fe oxide-bound OC (Fe–OC) pools, and associations with microbial communities over tea plantation establishment time-series (1, 7, 16, 25, and 42 years), this study explored the roles of coupled Fe oxides and microbial communities in regulating SOC accumulation and stabilization. The SOC levels significantly increased with years of tea plantation, accompanied by increases in the proportions of macroaggregates, poorly crystalline Fe oxides and organically complexed Fe, but soil pH decreased sharply. The increased soil Fe–OC pool and molar C:Fe ratios were positive correlated with SOC and macroaggregates, indicating that SOC was preserved by physic-chemical protection. Furthermore, these changes induced decreases in microbial biomass C and bacterial diversity with years of tea plantation. The relative abundance of A-strategists (i.e., Acidobacteria, Actinobacteria, Chloroflexi) increased concurrently, with an opposite trend for Y-strategists, suggesting tea plantation-induced environmental changes shifted the Y-strategists towards the predominance of A-strategists. Collectively, these findings provide new insights into the role of Fe oxides and microbial life history traits in SOC accumulation and stabilization in the progression of tea plantation establishment, including (i) physic-chemical protection of SOC through formation of Fe–OC by complexation; and (ii) regulation of the microbial community diversity and composition, especially bacterial life strategies. These results are of great implications for better predicting and accurately controlling the response of OC pools in tea plantations to future changes and disturbances and for maintaining regional C balance.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.